
http://www-lipn.univ-paris13.fr/~petrucci/PAPERS
In Proc. 8th Int. Conf. on Application of Concurrency to System Design (ACSD’08), Xi’an, China, June 2008.
IEEE Comp. Soc. Press, pages 88-97, 2008.

Modular Construction of the Symbolic Observation Graph

Kais Klai and Laure Petrucci

LIPN, CNRS UMR 7030
Université Paris 13

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

Email: {kais.klai,laure.petrucci}@lipn.univ-paris13.fr

Abstract

Model checking for Linear Time Logic (LTL)
is usually based on converting the (negation of a)
property into a Büchi automaton, composing the
automaton and the model, and finally checking
for emptiness of the language of the composed
system. The last step is the crucial stage of the
verification process because of the state explosion
problem. In this work, we present a solution
which builds, in a modular way, an observation
graph represented in a non-symbolic manner but
where the nodes are essentially symbolic sets
of states and the edges either labeled by events
occurring in the formula or by synchronization
actions between the system components. Due to
the small number of events to be observed in a
typical formula, this graph has a very moderate
size and thus the time complexity for verification
is negligible w.r.t. the time to build the observation
graph. Experimental results show that our method
outperforms both a non-modular generation of
the symbolic graph and existing non-symbolic
approaches (modular or not).

I. Introduction

Model checking is a powerful and widespread
technique for the verification of finite distributed
systems. Given a Linear-time Temporal Logic
(LTL) property and a formal model of the system,
it is usually based on converting the negation of

0This work is supported by the University Paris 13 BQR
project PROVISO.

the property into a Büchi automaton, composing
the automaton and the model, and finally
checking for the emptiness of the synchronized
product. The last step is the crucial stage of
the verification process because of the state
explosion problem i.e. the exponential increase
of the number of states w.r.t. the number of
system components. Numerous techniques have
been proposed to cope with the state explosion
problem during the last two decades. Among
them, symbolic model checking (e.g. [5], [8],
[10], [7]) aims at checking the property on
a compact representation of the system using
binary decision diagrams (BDD) techniques [1],
while modular verification (e.g. [20], [4], [14],
[13]) takes advantage of the modular design of
concurrent and distributed systems in order to
downsize the verification of the global system to
the analysis of its individual components.

In this paper, we present a hybrid framework
for checking linear time temporal logic properties
of concurrent and distributed systems. Actually,
we propose to separately build a symbolic ab-
straction of each component of the system. Ensure
that the abstraction preserves LTL\X properties,
and deduce the global abstraction of the global
system by synchronization. Finally, we ensure the
preservation of LTL\X properties at the global
level as well. The symbolic observation graph
[10] (SOG for short) is a reduced deterministic
graph where nodes are symbolic sets and where
edges are exclusively labeled by actions occurring
in the formula to be checked. It represents an
abstraction of the system on which the verification
of a LTL\X property is equivalent to the veri-

fication on the original reachability graph. The
main contribution of this paper is to allow the
preservation of this property by composition, i.e.
the SOGs of the components are built in isolation
and a synchronized product is then built in such
a way that the graph obtained is equivalent to
the classical reachability graph with respect to
LTL\X properties. This graph can thus be used by
a standard LTL model-checker to check a family
of properties: the set of properties involving a
subset of the observed actions, i.e. the actions of
the formula to be checked.

The paper is structured as follows. In sec-
tion II, we formalize the symbolic observation
graph technique, which was elaborated in a flat
setting (i.e. non modular). Then, section III shows
how this construction can be achieved in a modu-
lar way. It details the different algorithms at stake,
and proves the validity of the approach. These
algorithms were implemented in a software tool
and experiments comparing this approach to both
the modular state space technique and the stan-
dard reachability graph technique are discussed in
section IV. Section V is devoted to discussing our
technique w.r.t. related works while Section VI
concludes the paper and gives some perspectives.

II. The symbolic observation graph

In [10], the authors have introduced the sym-
bolic observation graphs (SOG for short) as an
abstraction of the reachability state graph of con-
current systems. They have also shown that the
verification of an event-based formula of LTL\X
(LTL minus the next operator) on the SOG is
equivalent to the verification of the formula on the
classical reachability graph. The construction of
the SOG is guided by the set of actions occurring
in the formula to be checked. Such actions are
said to be observed while the other actions of the
system are unobserved. Then, the SOG is defined
as a graph where each node is a set of states
linked by unobserved actions and each arc is
labeled by an observed action. Nodes of the SOG
are called meta-states and may be represented
and managed efficiently using decision diagram
techniques (BDDs for instance). Even though the
number of meta-states of a SOG is exponential
w.r.t. the number of states of the original system,
the SOG has a very moderate size in practice.
This is due to the small number of actions in a
typical formula. Thus, the time complexity of the
verification process on the SOG is negligible w.r.t.

to its building time.
The technique presented in this paper applies

to different kinds of models, that can map to
labeled transition systems, e.g. high-level Petri
nets. For the sake of simplicity and generality, we
chose to present it for labeled transition systems,
since the formalism is rather simple.

Definition 1 (Labeled Transition System):
A labeled transition system (LTS for short) is a
4-tuple 〈Γ,Act ,→, I〉 where:
• Γ is a finite set of states ;
• Act is a finite set of actions ;
• →⊆ Γ×Act × Γ is a transition relation ;
• I ⊆ Γ is a set of initial states.

Notations: Let 〈Γ,Act ,→, I〉 be a labeled tran-
sition system and let s, s′ be states in Γ, S, S′

subsets of Γ and a an action in Act .
• s a−→s′ denotes that (s, a, s′) ∈→ ;
• s 6→ denotes dead states i.e. states s ∈ Γ

satisfying @a ∈ Act ,@s′ ∈ Γ s.t. s a−→s′ ;
• S a−→S′ denotes that (∀s ∈ S,∃s′ ∈ S′ s.t
s a−→s′ ∧ ∀s′ ∈ S′,∃s ∈ S s.t s a−→s′) ;

• s a−→, means that ∃s′ ∈ Γ : s a−→s′ ;
• Enable(s) denotes the set of actions a such

that s a−→.
In [10], the authors presented the algorithm to
construct the SOG but did not give a formal
definition for it. Here we formally define meta-
states before giving a formal definition of the
SOG associated with a LTS, given a set Obs of
observed actions. We shall see later how this set is
chosen. The other actions, in UnObs = Act\Obs ,
are said to be unobserved.

Definition 2 (Meta-state):
Let T = 〈Γ,Act ,→, I〉 be a labeled transition

system. Let Act = Obs ∪ UnObs be partitioned
into observed and unobserved actions. Then, a
meta-state is a triple M = 〈S, l, d〉 defined by:

1) S is a non-empty subset of Γ where:
a) ∀s ∈ S, ∃i ∈ I and ∃σ ∈ Act∗ s.t.

i σ−→s ;
b) ∀s ∈ S,∀s′ ∈ Γ,∀σ ∈ UnObs∗ :

s σ−→s′ ⇒ s′ ∈ S ;
2) l = true iff the subgraph induced by S

contains a cycle ;
3) d = true iff S contains a dead state.

In the following M.S, M.l and M.d denote the
attributes of a meta-state M .

Explanation:
(1a): A meta-state contains only reachable states.
(1b): Given a meta-state M , for each state s ∈
M.S, all states s′ reachable from s by a sequence
of unobserved actions are also in M.S.

(2): l indicates that there exists a cycle with
unobserved actions only, within meta-state M .
(3): d indicates that the set of states S contains
(at least) one dead state f .

Definition 3 (Symbolic Observation Graph):
A symbolic observation graph is a LTS G =
〈Γ′,Act ′,→′, I ′〉 associated with a LTS T =
〈Γ,Obs ∪UnObs,→, I〉 such that:

1) Γ′ is a finite set of meta-states;
2) Act ′ = Obs;
3) →′⊆ Γ′×Act ′×Γ′ is a transition relation,

such that:
a) ∀M,M ′ ∈ Γ′ s.t. M a−→

′
M ′ for some

a ∈ Act ′ if one of the following
conditions holds:
i) M 6= M ′ ⇒ ∀s ∈ M.S,∀s′ ∈ Γ,
s a−→s′ ⇒ s′ ∈M ′.S ;

ii) M = M ′ ⇒ Let Pred =
{S ⊆ M.S | S = I ∨ ∃M ′ ∈
Γ′,∃S′ ⊆ M ′.S and ∃a′ ∈ Act ′

s.t. M ′ a
′

−→M ∧ S′ a
′

−→S}, then
∀S ∈ Pred,∃s ∈ S,∃s1 ∈
M.S s.t. s σ1−→s1 σ2−→s1 with σ1 ∈
UnObs∗, σ2 ∈ (UnObs ∪ {a})+ .

b) ∀s, s′ ∈ Γ, ∀a ∈ Obs s a−→s′ ⇒
∃M,M ′ ∈ Γ′ s.t. s ∈ M.S, s′ ∈
M ′.S and M a−→M ′.

4) I ′ = {M0}, where the meta-state M0 sat-
isfies I ⊆ M0.S and @M ∈ Γ′ \ M0 s.t.
M0.S ⊆M.S.
Explanation:

(1): The nodes of the symbolic observation graph
are meta-states.
(2): An arc of the SOG is labeled by an observed
action.
(3a): There exists an arc from a meta-state M
to M ′ labeled by a if one of the two following
conditions holds:
(3(a)i) M and M ′ are different, then each state
of M enabling a has its successor in M ′.
(3(a)ii) stands for a loop on a given meta-state
(i.e. M a−→

′
M), such a loop is permitted if we

guarantee that it is possible to execute a possibly
infinitely often each time M is reached (from
any path of the SOG). Pred(M) is the set of
subsets of states in M.S that can be reached
from an external meta-state by some event a′,
then the loop is permitted if there exists a circuit
C = s1

a1−→s2 a2−→· · · an−→s1 inside M.S involving
no observed actions except a that is reachable
from a state s ∈ S for each S ∈ Pred(M).
(3b): All the "observed" arcs in the original LTS
are preserved in the SOG.

(4): All the initial states of the original labeled
transition system are in the initial meta-state of
the symbolic observation graph.

A simplified algorithm to generate the SOG is
described in Algorithm 1. It uses a stack Waiting
containing meta-states to be processed. Function
metastate(S) constructs the meta-state asso-
ciated with the states in S. It first adds all the
states obtained by firing sequences of unobserved
actions only (according to definition 2.1b). Then d
and l are easily set using the algorithms presented
in [10]. The algorithm also adds the meta-state
to Waiting and Γ′ if it is a new one. Function
arc(M,a,M ′) adds an arc, labeled by a, from
the meta-state M to the meta-state M ′, to the
transition relation →′.
Function succ (S, a) returns the set of successors
of states in S by action a (i.e. succ (S, a) = {s′ |
∃s ∈ S s.t. s a−→s′).

Algorithm 1: Symbolic Observation Graph
Require: a LTS 〈Γ,Obs ∪UnObs,→, I〉
Ensure: SOG 〈Γ′,Obs,→′, I ′〉

{Initial meta-state};
1: M0 ← metastate(I);
2: I ′ ← {M0};
3: Γ′ ← {M0};
4: Waiting .Push(M0);

{Process states in Waiting};
5: while Waiting 6= ∅ do
6: Waiting .Pop(M = 〈S, l, d〉);
7: for all a ∈ Obs do
8: if enabled (M.S, a) then
9: S′ ← succ(M.S, a);

10: M ′ = metastate(S′);
11: if ∃M ′′ ∈ Γ′ s.t. M ′′ = M ′ then
12: arc(M,a,M ′′);
13: else
14: arc(M,a,M ′);
15: Γ← Γ ∪ {M ′};
16: Waiting .Push(M ′)
17: end if
18: end if
19: end for
20: end while

Example: Figure 1 illustrates an example
of LTS (Figure 1(a)) and the corresponding SOG
(Figure 1(b)) for Obs = {Sync, obs}. The ob-
tained SOG consists of 3 meta-states M1, M2 and
M3, an arc from M1 to M2 labeled by Sync and
one from M2 to M3 labeled by obs. Meta-state
M1 contains loops but no dead state, whereas M2

and M3 have both a loop and a dead state. Note
that state A4B3 is stored in both M2 and M3.

The equivalence between checking a given
property on the observation graph and checking

A1B1

A1B2 A3B1A2B1

A2B2 A3B2

A4B3 A5B3

A1B3

A2B3 A3B3

a e b

e

f

a b
e

c

f

Sync

f

Sync

c

d

obs

a b

c

(a) Example of LTS

M1

loop
—

M2

loop
dead

M3

loop
dead

A1B1

A4B3

A5B3

A4B3

Sync

obs

(b) SOG of LTS in fig-
ure 1(a) with Obs =
{Sync, obs}

Fig. 1. A LTS and its SOG

it on the original labeled transition system is
ensured by the preservation of three kinds of
sequences: the infinite observed sequences, the
finite maximal sequences and the infinite diver-
gent sequences. Thus, the observation graph ob-
tained preserves the validity of formulae written
in classical Manna-Pnueli linear time logic [15]
(LTL) without the “next operator” (because of the
abstraction of the immediate successors) (see for
instance [17], [9], [11]).

Proposition 1: [10] Let ϕ be a formula from
LTL\X. Let G be the symbolic observation graph
associated with a labeled transition system T ,
with Obs containing all the actions in ϕ. Then:
T |= ϕ⇔ G |= ϕ.

III. A modular construction of the ob-
servation graph

Large systems are often designed in a mod-
ular way, thus adopting a software engineering
approach and allowing for component reuse. This
section constitutes the core of the paper. Starting
from several LTS which synchronize over a com-
mon set of actions, it shows how to check LTL\X
properties using the symbolic observation graph
of the whole system. The construction proposed
here also follows a modular approach, and thus
avoids complete construction of the synchronized
product of the system modules.

Definition 4 (LTS synchronized product):
Let Ti = 〈Γi,Act i,→i, Ii〉, i = 1, 2 be two

LTS. The synchronized product of T1 and T2 over
their common (synchronized) actions Act1∩Act2,
is the labelled transition system T1 × T2 =
〈Γ,Act ,→, I〉 such that:

1) Γ = Γ1 × Γ2 ;
2) Act = Act1 ∪Act2 ;
3) → is the transition relation, defined by:
∀(s1, s2) ∈ Γ : (s1, s2) a−→(s′1, s

′
2)⇔

• s1
a−→1s

′
1 ∧ s2 a−→2s

′
2 if a ∈ Act1 ∩

Act2
• s1

a−→1s
′
1 ∧ s2 = s′2 if a ∈ Act1 \Act2

• s1 = s′1 ∧ s2 a−→2s
′
2 if a ∈ Act2 \Act1

4) I = I1 × I2.
Point 3 of Definition 4 explicits the synchroniza-
tion operation. An action in both LTS T1 and
T2 is synchronized, i.e. it must be enabled and
occurs simultaneously in both LTS. Otherwise,
if the action belongs to only one of the LTS,
its transition relation is preserved. The set of
states is reduced to reachable states only i.e. Γ =
{(s1, s2) ∈ Γ1 × Γ2 | ∃(i1, i2) ∈ I1 × I2,∃σ ∈
Act∗ : (i1, i2) σ−→(s1, s2)}. Similarly, the set of
actions is reduced to those that can effectively
take place in the synchronized product: Act =
{a ∈ Act1 ∪ Act2 | ∃s, s′ ∈ Γ, a−→(s, s′)}. The
algorithm constructing the synchronized product
of two LTS is rather simple. Starting from the
initial states in I , it constructs the successors
according to the transition relation of definition 4.

Example: Let us consider the two modules
A and B in figure 2. Their synchronization on
action Sync leads to the labelled transition system
of figure 1(a).

A1

A2 A3

A4 A5

a b

Sync Sync

c
d

obs

(a) Module A

B1

B2

B3

e f

Sync

(b) Module B

Fig. 2. Two modules synchronizing on
Sync

Our approach consists in synchronizing sym-
bolic observation graphs. Therefore, we define the
product of two meta-states.

Definition 5 (Meta-states product):
Let Gi = 〈Γ′i,Obsi,→′i, I ′i〉, i = 1, 2 be two

SOGs associated with two LTSs Ti. Let Mi =
〈Si, li, di〉 be a meta-state of Gi. The product
meta-state M = 〈S, l, d〉 = M1 ×M2 is defined
with respect to Obs1 ∩ Obs2 as follows: S =
S1×S2, l = l1∨ l2 and d =true iff ∃(s1, s2) ∈ S
s.t. (s1, s2) is a dead state of T1 × T2.

While the computation of the loop attribute of the
product meta-state is straightforward, the compu-
tation of the deadlock attribute is rather complex.
In fact, it is well-known that deadlock-freeness
is not preserved by synchronization. Figure 3
illustrates such a situation, where two modules
(Figure 3(a) and Figure 3(b)) without deadlocks
lead, by synchronization over {c, d, e}, to a syn-
chronized product (Figure 3(c)) containing two
dead states. Here, we take advantage of the local
deadlock properties computed on the meta-states
separately. Algorithm 2 computes the deadlock
attribute of a product meta-state M = M1 ×M2.
A straightforward case is detected when both
attributes d1 and d2 are true (lines 1–3). In this
case, there exists a dead state in both M1 and
M2, e.g. s1 and s2 respectively. Then the product
(s1, s2) is a dead state of S (hence d=true). Now,
assume that di = false (for a meta-state Mi).
First, we detect states in Si that enable only
synchronization transitions which are not enabled
in Mj (for j 6= i). Such states are dead states
and di is thus changed to true. This is achieved
in the first loop of Algorithm 2 (lines 4–8) as a
first stage before the computation of the deadlock
attribute of the product meta-state. If d1 and d2
are both true S contains a dead state (lines 9–11).
In the second loop (lines 12–16), a second case is
handled: assume there exists a dead state s1 ∈ S1.
Then, if there exists a state s2 ∈ S2 enabling only
synchronization actions, the product state (s1, s2)
is a dead state.
Finally, the case of absence of deadlock in both
meta-states is taken into account (lines 17–20).
In this case, the computation of the deadlock
attribute of the composed meta-state is performed
as follows: for i = 1, 2, we detect the existence of
subsets, namely synci, of synchronization actions
enabled in Mi that satisfy two properties: (1)
synci is enabled in Mj (for j 6= i) ; (2) There
exists a subset of states in Si enabling actions of
synci only.

As soon as two such subsets sync1 and sync2
are detected (from the study of M1 and M2

respectively), if sync1 and sync2 are disjoint,
then one can deduce that the composed meta-state
contains a dead state. In fact, the state (s1, s2)

Algorithm 2: Computing the deadlock at-
tribute of a product meta-state

Require: a product meta-state M = M1 ×M2

Ensure: Computes d
1: if d1 ∧ d2 then
2: return true;
3: end if
4: for all i, j ∈ {1, 2} s.t. i 6= j do
5: if (di = false) ∧ (∃si ∈ Si s.t.

Enable(si) ⊆ (Sync \ Enable(Sj))) then
6: di ← true
7: end if
8: end for
9: if d1 ∧ d2 then

10: return true;
11: end if
12: for all i, j ∈ {1, 2} s.t. i 6= j do
13: if (di ∧ ¬dj) ∧ (∃sj ∈ Sj s.t.

Enable(sj) ⊆ Syncj) then
14: return true;
15: end if
16: end for
17: if ∃sync1, sync2 ⊆(Enable(Si)∩ Enable(Sj)) s.t.

(sync1 ∩ sync2 = ∅) and, for i ∈ {1, 2}
((Enable−1(synci) \ Enable−1(Act \
Sync)) ∩ Si 6= ∅ then

18: return true;
19: end if
20: return false;

where s1 and s2 are states from S1 and S2

that enable only sync1 and sync2 respectively
is dead because no synchronization is possible
(sync1 ∩ sync2 = ∅).

The most expensive operation of Algorithm 2
is the test at line 17. Its worst case complexity is
(2|Enable(S1)∩Sync|+|Enable(S2)∩Sync|). However,
in practice the number of outgoing observed ac-
tions of a given meta-state is very small. More-
over, all the operations of Algorithm 2 can be
done symbolically by using decision diagram
techniques (e.g. BDDs).
In the following, we prove the correctness of
Algorithm 2.

Theorem 1: Let M1 and M2 be two meta-
states and let M = M1×M2 be the product meta-
state as defined in Definition 1. Then the value d
computed by Algorithm 2 is true iff S = S1×S2

contains a dead state.
Proof: ⇒ Straightforward (see the descrip-

tion of Algorithm 2).
⇐ Let (s1, s2) ∈ S1 × S2 be a dead state.
Then, for i ∈ {1, 2} no local action (i.e. in
Acti \ (Act1 ∩Act2)) is enabled in si. Let synci
denote the set (possibly empty) of synchronization
actions enabled in si. Then sync1 ∩ sync2 = ∅.

A1

A2 A3

A4

a b

c d
e

(a) A

×

B1

B2 B3

B4

a’ b’

c d
e

(b) B

=

A1B1

A1B3A3B1A2B1 A1B2

A2B3A2B2 A3B2 A3B3

A4B4

a
ba’

b’

a’
b’ a’ b’

a b
b

a

c d

e

(c) A×B

Fig. 3. Non-preservation of deadlock-freeness by synchronisation

We distinguish the following three cases:
1) sync1 = sync2 = ∅: this case is handled in

lines 1–3 of Algorithm 2 and the value of
d is true ;

2) sync1 = ∅ ⊕ sync2 = ∅: this case is
handled in the first loop of Algorithm 2
(lines 4–8) and the value of d is set to true
(lines 9–11) ;

3) sync1 6= ∅∧ sync2 6= ∅: this case is treated
in lines 17–18 of Algorithm 2 and the value
of d is true.

The construction of the symbolic observation
graph of a synchronized product of modules con-
sists in first building the SOGs of the individual
modules and then synchronizing them. Therefore,
we now define the synchronization of symbolic
observation graphs.

Definition 6 (SOG synchronized product):
Let Gi = 〈Γ′i,Obsi,→′i, I ′i〉, i = 1, 2 be the two
symbolic observation graphs associated with Ti =
〈Γi,Obsi ∪UnObsi,→i, Ii〉. Then, the synchro-
nized product G = G1 × G2 = 〈Γ′,Act ′,→′, I ′〉
is such that:

1) Γ′ = Γ′1 × Γ′2
2) Act ′ = Obs1 ∪Obs2
3) ∀M = M1×M2 ∈ Γ′ : M a−→

′
M ′ = M ′1×

M ′2 ⇔
• M1

a−→
′
1M
′
1 ∧ M2

a−→
′
2M
′
2 if a ∈

Obs1 ∩Obs2
• M1

a−→
′
1M
′
1 ∧M2 = M ′2 if a ∈ Obs1 \

Obs2
• M1 = M ′1 ∧M2

a−→
′
2M
′
2 if a ∈ Obs2 \

Obs1
4) I ′ = I ′1 × I ′2
Once again, only reachable meta-states are

kept. The actions are those observed in the two

Algorithm 3: Synchronous product of 2 SOG
Require: Gi = 〈Γ′i,Obsi,→′i, I ′i〉 for i = 1, 2
Ensure: G1 × G2 = 〈Γ′,Act ′,→′, I ′〉

{Initial meta-state};
1: Waiting .Push(I ′1 × I ′2);

{Process states in Waiting};
2: while Waiting 6= ∅ do
3: Waiting .Pop(M = M1 ×M2);
4: for all a ∈ Act ′ do
5: if a ∈ Obs1 ∩Obs2 then
6: if M1

a−→
′
1M
′
1 ∧M2

a−→
′
2M
′
2 then

7: M ′ = M ′1 ×M ′2;
8: end if
9: else

10: if a ∈ Obs1 \Obs2 then
11: if M1

a−→
′
1M
′
1 then

12: M ′ = M ′1 ×M2;
13: end if
14: else
15: if M2

a−→
′
2M
′
2 then

16: M1 ×M ′2;
17: end if
18: end if
19: end if
20: if ∃M ′′ ∈ Γ′ s.t. M ′′ = M ′ then
21: arc(M,a,M ′′);
22: else
23: arc(M,a,M ′′);
24: Γ′ ← Γ ∪ {M ′};
25: Waiting .Push(M ′)
26: end if
27: end for
28: Waiting ←Waiting \ {M};
29: end while

SOGs (point 2). Note that the synchronization
actions have to be a part of the observed action in
each SOG (i.e. Act1∩Act2 ⊆ Obsi for i = 1, 2).
The synchronization is similar to that for the
product of LTS (point 3). The initial meta-state is
obtained by composition of the initial meta-states

of the modules SOGs.
Algorithm 3 implements the synchronized

product of two symbolic observation graphs. This
algorithm is very similar to the construction of
LTSs synchronized product.

Property 1: Let Ti, i = 1, 2 be two LTS,
with Ti = 〈Γi,Obsi ∪UnObsi,→i, Ii〉, and let
Sync ⊆ Obsi be a subset of synchronization
actions. Then, SOG(T1 × T2,Obs1 ∪ Obs2) and
SOG(T1,Obs1) × SOG(T2,Obs2) are isomor-
phic.

Proof: The property is a consequence of
definitions 4, 3, 5, 6 and theorem 1.
Using Proposition 1 and Property 1, one can
easily deduce the following result.

Corollary 1: Let T = T1 × T2 be a labelled
transition system obtained by synchronizing two
LTS T1 and T2. Let G be the symbolic observation
graph obtained by synchronizing the symbolic
observation graphs associated with T1 and T2
respectively. Let ϕ be a formula from LTL\X.
Then: T |= ϕ⇔ G |= ϕ.

Example: Figure 4 shows the symbolic
observation graphs of modules A and B from
figure 2, when observing Obs = {Sync, obs}. The
synchronized product of these two SOGs is the
SOG in figure 1(b).

MA1

loop
—

MA2

loop
—

MA3

loop
—

A1

A4

A5

A4

Sync

obs

(a) SOG of module A

MB1

loop
—

MB2

— dead

B1

B3

Sync

(b) SOG of module B

M′1
loop
dead

M′2
loop
dead

A1B1

A4B3

obs

(c) The reduced SOG

Fig. 4. The reduced SOG of two syn-
chronized modules

The verification process is as follows: first,
we apply the previous algorithms to obtain the
product SOG, observing both the synchronized
actions and those appearing in the formula (the
observed actions). Then, we reduce it further so as

Algorithm 4: Checking a LTL\X formula
Require: 2 LTS: T1 and T2 input : LTL\X

formula ϕ
Ensure: satisfaction of ϕ {SOG of T1 and T2};

1: Obs =action in ϕ;
2: SOG1 ← SOG(T1,Obs ∪ (Act1 ∩Act2));
3: SOG2 ← SOG(T2,Obs ∪ (Act1 ∩Act2));

{Product of SOGs};
4: SOG← SOG1 × SOG2;

{Reduction of SOG};
5: for all M = 〈S, l, d〉 ∈ SOG do
6: for all a ∈ Act1 ∩Act2 :

M a−→M ′ = 〈S′, l′, d′〉 do
7: M ← 〈S ∪ S′, l ∨ l′, d ∨ d′〉;
8: SOG← SOG \ {M ′};
9: end for

10: end for

to keep only observed actions. This is sketched in
algorithm 4. The formula to verify is checked on
this reduced symbolic observation graph by using
any standard (on-the-fly) model checker tool.

Example: Let us now suppose we want to
check the LTL\X formula: ϕ = GFobs. This
formula expresses that, always, obs will be even-
tually executed in the future. The first step of
the algorithm constructs the symbolic observation
graph with the synchronized actions plus those of
the formula as observed actions. Hence, in this
example, Obs = {Sync, obs}. This leads to the
SOG in figure 1(b). Then, the second step reduces
it even further so as to retain only the actions
in the formula, i.e. obs, leading to the graph in
figure 4(c). It consists of two meta-states in both
of which a loop and a deadlock exist, and an arc
labeled by obs. Since both meta-states contain a
deadlock, we can easily conclude that formula ϕ
does not hold.

IV. Experimental results

A symbolic observation graph software tool
has been implemented, in which the user can
choose between flat or modular construction.
The Buddy BDD package (http://sourceforge.net/
projects/buddy) is exploited in order to represent
meta-states compactly, to implement the transition
relation and to symbolically detect deadlocks and
loops within meta-states. Five case studies have
been selected for experimenting the modular con-
struction of the symbolic observation graph. Be-
cause of lack of space, we refer the reader to [16]
for a detailed description of these examples and
the corresponding Petri net models. We think that

Model param Occurrence Graph
NOG AOG

5 AGVs 30, 965, 760 345, 784, 320
Database n n× 3n−1 + 1 2(n− 1)× 3n−2 + 2n

Philosophers
2 3 4
3 4 6

n NOG(n− 1) 2n× Fn, F2 = F3 = 1
+NOG(n− 2) Fn = Fn−1 + Fn−2

Poisoned
philosophers

2 21 38
3 99 264
n 4NOG(n− 1) + 3NOG(n− 2) + 6

Railway n 4(n2 + n+ 1) 4n3 + 22n2 + 16n+ 11

TABLE I. Occurrence graphs

the composition schemes of the chosen examples,
with different coupling degrees between modules,
are rich enough to claim the significance of the
results obtained.

The modular observation graph construction
is compared to the flat occurrence graph (the
explicit reachability graph), the modular state
space presented in [14] and the non-modular
version of the symbolic observation graph. The
comparison criterion is the size of the obtained
graph in terms of number of nodes and arcs. When
possible, we give these numbers as a function of
the parameter n which represents the number of
the synchronized modules. Moreover, the number
of bdd nodes is given for the symbolic observation
graph techniques in order to measure the size
of the generated bdds. For these two techniques
(Table III) the size of the generated graph, in
terms of number of nodes (N(m)sog) and number
of arcs (A(m)sog), is the same as long as the set
of the observed actions is the same. However,
the number of bdd nodes grows exponentially (in
some cases) w.r.t. n for the SOG technique (col-
umn bddsog) but remains constant in the MSOG
(column bddmsog). This is explained by the fact
that the same bdd variable can be reused for each
processed module. This is the main improvement
w.r.t. the SOG technique beside the reusability of
the SOG generated separately for each module.

Note that, even if the theoretical complexity
of the SOG techniques is exponential w.r.t. the
occurrence graph size, this limit is almost never
reached in practice. The obtained graphs have a
negligible size w.r.t. the occurrence graph size
(Table I). In addition, the MSOGs are smaller
than the graphs generated by the modular state
space approach (Table II) especially when the
modules are loosely coupled (e.g. the AGV exam-
ple). In such cases the number of synchronization
actions is relatively small and one can expect a

spectacular reduction in the size of the MSOG
obtained. Finally, one can note that when there is
no local behavior (all actions of the system are
observed) the obtained (M)SOGs are isomorphic
to the occurrence graphs (e.g. the traditional din-
ing philosophers example).

V. Discussion and related work

During the last 20 years, many researchers
have worked on the use of abstraction and com-
positionality to tackle the explosion problem of
model-checking temporal properties on concur-
rent systems. In [11], the authors established
that the CFFD-equivalence is exactly the weakest
equivalence preserving next time-less linear tem-
poral logic. The SOG technique is based on this
equivalence and we have presented in this paper
a modular construction that preserves the CFFD
semantics. The computation of the deadlock at-
tribute of a product meta-state can be avoided
when its loop attribute is proved to be true. In fact,
in this case, we switch to the NDFD equivalence
which does not distinguish livelock from deadlock
while maintaining the correctness of the analysis
result.

The symbolic observation graph presents a new
and improved variant of acceptance graphs [6], [2]
(or dually refusal graphs [19]) that are used to
test equivalence and reduction (traces languages
inclusion). In addition, each state of the accep-
tance graph is labeled with a minimized accep-
tance set (or dually minimal refusal set). Each
element of the minimal acceptance set is a set of
observed actions enabled from some state of the
node (possibly after executing some sequence of
unobserved actions). Here, only one single bit is
needed to detect a deadlock within a given meta-
state and can be computed symbolically in only
one BDD operation for each observed action. The

Model param Modular State Space
NMSS AMSS

5 AGVs 900 2, 687
Database n 6n+ 3 4n

Philosophers
2 11 4
3 16 6
n NOG(n) + 4n AOG(n)

Poisoned
philosophers

2 33 30
3 99 171
n 4NMSS(n− 1) +NMSS(n− 2) + 8n+ 4

Railway n
n(n+1)

2
+ 5n+ 10 n2 + 8n+ 10

TABLE II. Modular State Spaces

Model param MSOG/SOG
N(m)sog A(m)sog bddsog bddmsog

5 AGVs 12 18 344 78
Database n n+ 1 2n 5

2
n2 + 25

2
n− 4 14

Philosophers
2 3 4 22 4
3 4 6 42 4
4 7 16 86 4
5 11 30 150 4
6 18 60 258 4
n NOG(n) AOG(n) 2bddsog(n− 1)

4
−bddsog(n− 3)

Poisoned
philosophers

2 17 24 138 24
3 75 162 686 24

n 4N(m)sog(n− 1) 4bddsog(n− 1) 24
+N(m)sog(n− 2) + 4 +bddsog(n− 2) + 126

Railway n
n(n+1)

2
+ 2n+ 3 n2 + 4n+ 1 1

2
n3 + 9

2
n2 + 16n+ 17 8

TABLE III. Modular and flat Symbolic Observation Graphs

acceptance graphs cannot be represented sym-
bolically since, to compute the acceptance sets
associated with nodes, one needs to deal with the
individual states.

Other approaches based on abstraction re-
finement and deadlock detection have also been
widely studied in various contexts (e.g. [18],
[12], [3], ...). However, on the one hand, the
conservative abstractions require in general an it-
erated abstraction refinement mechanism in order
to establish specification satisfaction. On the other
hand, to the best of our knowledge, none of the
deadlock detection approaches involve symbolic
abstraction or modularity in an automated form
as our present work does.

Modular state spaces were studied in [14]
in the case of systems composed of semi-
autonomous subsystems. The idea there was to
start from a system designed in a modular way
and construct the state space of the complete
system in a similar fashion: one local state space
per module and a synchronization graph showing
their interactions. The technique was applied to a
problem of controller design, where some of the

actions could be controlled and others not. This is
very similar to the notion of observable actions,
and the approach advocated was also to lift these
actions to the global (i.e. synchronization) level,
so that both synchronized and controllable actions
are visible in the synchronization graph and only
there. One can then wonder whether there is
a difference between the synchronization graph
and the symbolic observation graph. Indeed, if
we construct the SOG for the example of [14],
the result is similar to the synchronization graph.
However, applying the modular state space tech-
nique to the example from this paper leads to a
synchronization graph larger than the SOG. This
is due to the grouping of states within meta-
states which is intrinsically different in these two
approaches. Another difference lies in properties
verification. With modular state spaces, the graph
construction does not depend on the formula to
check and the verification is done a posteriori.
Here, the construction of the graph depends on
the property, and some characteristics of meta-
states are stored on-the-fly.

VI. Conclusion

The Symbolic Observation Graph technique
aims at checking LTL\X properties while avoid-
ing the state space explosion problem. Ear-
lier work [10] has defined symbolic observation
graphs and has shown that they include sufficient
information to check LTL\X properties. However,
systems are often so large that they are designed
in a modular fashion.

Hence, this paper has addressed the construc-
tion of symbolic observation graphs in a modular
way, consistent with the design approach. First,
actions to be observed are deduced from the
formula to check, and are added to the actions
performing synchronisation with other modules.
A SOG can then be built for each module. These
are smaller than the original models since they do
not include all actions and all states. Therefore,
they are much more manageable. We defined
the synchronization of the SOGs, so that it is
isomorphic to the SOG that would be obtained
from the complete model (where modules are
synchronized). In order to check the property,
the synchronization transitions are not necessary
anymore. Thus the SOG is reduced before the
model-checking phase.

The SOG contains meta-states that carry both
some states and some properties (loops and dead-
locks). Composing meta-states hence requires
composing these properties, which is not always
a straightforward issue. We have shown how to
optimize this calculus in many cases. The algo-
rithms presented here have been implemented in a
prototype tool. It has proven efficient for standard
examples, and should now be applied to larger
case studies. The next step would be to build a
model checker based on the (Modular) SOG.

References

[1] Randal E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing
Surveys, 24(3):293–318, 1992.

[2] Ufuk Celikkan and Rance Cleaveland. Computing di-
agnostic test for incorrect processes. In Proceedings
of the IFIP TC6/WG6.1 Twelth International Sympo-
sium on Protocol Specification, Testing and Verification
XII, pages 263–277, Amsterdam, The Netherlands, The
Netherlands, 1992. North-Holland Publishing Co.

[3] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine,
Natasha Sharygina, and Nishant Sinha. Concurrent
software verification with states, events, and deadlocks.
Formal Asp. Comput., 17(4):461–483, 2005.

[4] Søren Christensen and Laure Petrucci. Modular analysis
of Petri nets. Computer Journal, 43(3):224–242, 2000.

[5] Edmund M. Clarke, Kenneth L. McMillan, Sérgio
Vale Aguiar Campos, and Vassili Hartonas-Garmhausen.
Symbolic model checking. In Int. Conf. on Computer
Aided Verification (CAV), volume 1102 of Lecture Notes
in Computer Science, pages 419–427. Springer, 1996.

[6] R. Cleaveland and M. Hennessy. Testing equivalence as
a bisimulation equivalence. In Proceedings of the inter-
national workshop on Automatic verification methods for
finite state systems, pages 11–23, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

[7] Jean-Michel Couvreur. A BDD-like implementation of
an automata package. In Int. Conf. on Implementation
and Application of Automata (CIAA), volume 3317 of
Lecture Notes in Computer Science, pages 310–311.
Springer, 2004.

[8] Jaco Geldenhuys and Antti Valmari. Techniques for
smaller intermediary BDDs. In Int. Conf. on Concur-
rency Theory (CONCUR), volume 2154 of Lecture Notes
in Computer Science, pages 233–247. Springer, 2001.

[9] Ursula Goltz, Ruurd Kuiper, and Wojciech Penczek.
Propositional temporal logics and equivalences. In
CONCUR, pages 222–236, 1992.

[10] Serge Haddad, Jean-Michel Ilié, and Kais Klai. De-
sign and evaluation of a symbolic and abstraction-based
model checker. In Int. Conf. on Automated Technology
for Verification and Analysis (ATVA), volume 3299 of
Lecture Notes in Computer Science. Springer, 2004.

[11] Roope Kaivola and Antti Valmari. The weakest com-
positional semantic equivalence preserving nexttime-less
linear temporal logic. In CONCUR, pages 207–221,
1992.

[12] Ferhat Khendek and Gregor von Bochmann. Merging
behavior specifications. Formal Methods in System
Design, 6(3):259–293, 1995.

[13] Kais Klai, Serge Haddad, and Jean-Michel Ilié. Modular
verification of Petri nets properties: A structure-based
approach. In Int. Conf. on Formal Techniques for
Networked and Distributed Systems (FORTE), volume
3731 of Lecture Notes in Computer Science, pages 189–
203. Springer, 2005.

[14] Charles Lakos and Laure Petrucci. Modular analysis
of systems composed of semiautonomous subsystems.
In Int. Conf. on Application of Concurrency to System
Design (ACSD), pages 185–194. IEEE Comp. Soc. Press,
2004.

[15] Zohar Manna and Amir Pnueli. The temporal logic of
reactive and concurrent systems. Springer-Verlag New
York, Inc., New York, NY, USA, 1992.

[16] Laure Petrucci. Cover picture story: Experiments with
modular state spaces. In Petri Net newsletter, pages 5–
10, 2005.

[17] Antti Puhakka and Antti Valmari. Weakest-congruence
results for livelock-preserving equivalences. In CON-
CUR, pages 510–524, 1999.

[18] A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith,
J. R. Hulance, D. M. Jackson, and J. B. Scattergood.
Hierarchical compression for model-checking csp or
how to check 1020 dining philosophers for deadlock.
In TACAS, pages 133–152, 1995.

[19] Z. P. Tao, G. von Bochmann, and R. Dssouli. Verification
and diagnosis of testing equivalence and reduction rela-
tion. In ICNP ’95: Proceedings of the 1995 International
Conference on Network Protocols, page 14, Washington,
DC, USA, 1995. IEEE Computer Society.

[20] Antti Valmari. Composition and abstraction. In MOVEP,
volume 2067 of Lecture Notes in Computer Science,
pages 58–98. Springer, 2000.

