http://www-lipn.univ-parisi3.fr/“petrucci/PAPERS
In Proc. 80th Int. Conf. Application and Theory of Petri Nets (PetriNets’2009), Paris, France, June 2009,
volume 5606 of Lecture Notes in Computer Science. Springer, 2009.

Towards a Standard for Modular Petri Nets:
A Formalisation

E. Kindler! and L. Petrucci?

! Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Lyngby, DENMARK
eki@imm.dtu.dk
2 LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

petrucci@lipn.univ-parisi3.fr

Abstract. When designing complex systems, mechanisms for structur-
ing, composing, and reusing system components are crucial. Today, there
are many approaches for equipping Petri nets with such mechanisms. In
the context of defining a standard interchange format for Petri nets, mod-
ular PNML was defined as a mechanism for modules in Petri nets that is
independent from a particular version of Petri nets and that can mimic
many composition mechanisms by a simple import and export concept.
Due to its generality, the semantics of modular PNML was only infor-
mally defined. Moreover, modular PNML did not define which concepts
could or should be subject to import and export in high-level Petri nets.
In this paper, we formalise a minimal version of modular high-level Petri
nets, which is based on the concepts of modular PNML. This shows that
modular PNML can be formalised once a specific version of Petri net is
fixed. Moreover, we present and discuss some more advanced features of
modular Petri nets that could be included in the standard. This way, we
provide a formal foundation and a basis for a discussion of features to be
included in the upcoming standard of a module concept for Petri nets in
general and for high-level nets in particular.

Keywords: Modular Petri Nets, Standardisation, High-Level Nets

1 Introduction

It is well-known that, in order to design large and complex systems, a mechanism
to break the system down into smaller pieces is needed. Although Petri nets are
often blamed for not having a structuring mechanism, there actually are many
proposals for composing Petri nets and for splitting large models into smaller
ones (see related work in Sect. 8). Moreover, for industrial size systems, it is not
only important to have a system composed of smaller subsystems or modules; a
module concept must also cater for re-use and abstraction.

The standard on High-level Petri nets, ISO/IEC 15909 Part 1 [1], however,
does not define a concept for modules yet. Structuring issues and net extensions

were left for the future Part 3 of the standard. In this paper, we make a proposal
for a module concept for high-level Petri nets and its mathematical underpinning.
Note that there are two major directions for constructing nets from some parts,
which we call composition and modularity. In composition, basically, any two or
more nets can be composed by one or more composition operators, which gives
a new net, which, in principle, can be very different from the original nets. In
modularity, we can basically instantiate different module definitions with clear
interfaces; these instances can be connected with each other at their interfaces,
but their structure is not changed. Here, we propose a modularity approach;
still, this approach can mimic the main composition operators for nets like place
and transition fusion by the help of import and export nodes and symbols in the
interfaces.

The module concept which we propose here is—up to some details—the one
from modular PNML [2, 3], which was defined along with the early version of the
Petri Net Markup Language® for interchanging all kinds of Petri nets. Actually,
modular PNML was more ambitious and more general since it was intended
to work for all kinds of Petri nets—in the terminology of PNML, for all Petri
net types. The downside of modular PNML’s generality, however, is that the
semantics was defined informally and only in terms of syntactical substitutions,
copies, and replacements, which was called flattening. Moreover, a concept for a
proper and syntactically correct use of symbols was proposed only very recently
[5]. Here, we focus on the module concepts for high-level Petri nets and provide
both, some semantical concepts for a more elegant way of dealing with modular
high-level Petri nets and a clear semantics.

One problem with most of the mathematical formalisations of high-level Petri
nets is that the sort and operation symbols and their underlying meaning (the
algebra) is monolithic. This becomes a problem when using and combining sym-
bols from different module instances. In this paper, we solve this problem by a
simple concept called generators.

2 Introductory example

In this section, we discuss the main concepts of modular PNML with the help
of an example. The example as well as its explanation are a revised version of
the example from [5], which was based on examples from |2, 3].

2.1 Module definition

Figure 1 shows an example of a module Channel that transmits some information
from a place pI to a place p2. To be more precise, Fig. 1 shows the module
definition. It consists of two parts: The upper part in the bold-faced box defines
the interface of the module and its name Channel. The interface consists of

L PNML is currently under the final ballot as an interchange format for High-level
Petri nets, subject of Part 2 of the standard [4].

Inverter
pl: data Channel p2: data pl:B . p2: AxB
N s import Sort: A
. /‘r import Sort: data Q | /‘, import Sort: B Q
i T it import Operator: f ‘
| T i input Sorts A I
| declarations !) output Sort B !
| var x:data !]) |
! | i declarations M
| ! | var x:A !
X Xl i : (: [f)] [(x.f))] Q
pl: data t p2: data pl:B t p2:AxB
Fig. 1. The module Channel Fig. 2. The module Inverter

different parts: it imports a place (the dashed circle on the left-hand side) and it
exports a place (the solid circle on the right-hand side). The difference between
import and export nodes will become clear later in this paper. Intuitively, the
import place will be provided by the environment of the module when it is used;
conversely, the export place is a place that can be used by the environment of
the module. In addition to the import and export nodes, the module definition
also imports a sort symbol. As indicated by its name, this sort represents the
type data that should be transmitted over the channel. In order to make the
symbol an import symbol, we use the keyword import?, the additional text Sort
indicates that this symbol is a sort.

The lower part of the module definition in the thinly outlined box is the
implementation of the module. Basically, this is a “normal” high-level Petri net.
The only difference is that it uses the sort data provided via the interface, and
some of its elements refer to the interface. The place on the left-hand side is asso-
ciated with the import place, while the place on the right-hand side is associated
with the export place, as graphically indicated by the two dashed lines.

Moreover, there is a transition between these two places; the annotations of
the two arcs are [x], where x is a variable of sort data. This variable is defined in
the declaration of the implementation; the declaration makes use of the imported
sort symbol data. The bracket notation around variable x indicates that the arc
expression denotes a multiset with a single element® bound to variable x.

Note that both places in the module implementation have type data, which
exactly corresponds to the type of the import and export places in the interface.

2.2 Module instances

Next, we build a simple system from the module Channel. Figure 3 shows the use
of three instances of the module Channel. The instances are named chl, ch2, and

2 Actually, the keywords import and export, as well as the graphical notation for import
and export nodes, are not the point of this paper.
3 Often, the notation 1'x is also used, e.g., for coloured nets in CPNTooLS [6].

pl: data chl:Channel p2: data pl: data ch2:Channel p2: data pl: data ch3:Channel p2: data
data = int Q<” ***** -) data = int Q<” ***** -) data = int O

declarations

1 +1] var x:int
@ e+] — 2]
L]
t

p:int

-

Fig. 3. Using instances of module Channel

declarations declarations declarations
var chl.x:int chi.p2: int var ch2.x:int ch2.p2: int var chl.x:int ch3.p2: int

[ch1.x] [ch2.x] ’—‘ [ch2.x] [ch3.x] ’—‘ [ch3.x]
L L

chit chat chat
[ch1l.x] declarations

var x:int
[x+1]

X
[2.5] X
t

p:int

Fig. 4. The resulting model

ch3, respectively. To indicate the instantiation, we use the name of the instance
followed by the name of the module definition (inspired by UML).

With the help of this example, we can explain the meaning of import places
and import symbols. For each instance of the module, the import place needs
to refer to some place outside the module, which will be the one imported for
that instance. This is indicated by dashed arrows from the use of the interface to
some other parts of the system. Note that export nodes of module instances are
seen outside a module. Hence, they can be referred to from import nodes. This
way, we get a sequence of three channels. Once the data from the leftmost place
is transmitted to the right-most channel, the additional transition increments
the token value and sends it back to the start place.

This is where the import symbol data representing a sort comes in again.
For each instance of the module Channel, we must provide a sort for the symbol
data. In this example, we use the sort int, which is a built-in sort of high-level
Petri nets. This way, the chain of channels transmits integer values. However,
we could have used any other built-in or user-defined sort for that.

From the model in Fig. 3 and the definition of the module Channel as shown
in Fig. 1, the actual Petri net defined is the one shown in Fig. 4. It is obtained
by making a copy of the module implementation for each module instance and
by merging the nodes identified by the references. Moreover, every occurrence
of the sort data in the module implementation is now replaced by the sort it is
assigned in this instance of the module: int in our example.

2.3 More advanced concepts

In the rest of this paper, we will formalise these ideas. The formal definitions
will however be more general. In our example, we had only import and export

places. In the general definition, there will be also import and export transitions,
with basically the same mechanism: fusing the respective transitions.

Moreover, modules can also import operation symbols. Figure 2 shows an
example. For some operation f : A — B and some value y of sort B, which is put
to the import place, it calculates a pair (z,y) such that f(z) = y and puts this
pair to the output place—if such a pair exists: it magically computes the inverse
of f. Note that the module is independent of a particular operator f; it works for
any operator, which will be provided when the module is instantiated.

In addition to the import of an operation symbol, this example shows another
important feature. In the implementation of the module, we make use of the
imported sorts A and B and build a new one, the product sort. This is, actually,
one of the technically tricky issues of the formalisation.

Finally, our formalisation allows for exporting sort and operation symbols.

3 Basic Definitions

In this section, we formalise algebraic Petri nets and all the pre-requisites. We
introduce the standard concepts of algebraic specifications [7] and of algebraic
Petri nets [8-11, 1], but in a notation easing the definition of modules.

3.1 Basic notations

As usual, N stands for the set of natural numbers (including 0), and B stands for
the set of booleans, i.e., B = {false, true}. For some set A, AT denotes the set of
all non-empty finite sequences over A. For some function f : A — B and some
set C, the restriction of f to C is defined as the function f|c : ANC — B with
fle(a) = f(a) for alla € ANC. For two functions f : A — Band g : C' — D with
disjoint domains A and C, we define fUg as the function (fUg) : AUC — BUD
with (fUg)(a) = f(a) for all a € A and (f U g)(c) = g(c) for all ¢ € C.

For some set I, a set A together with a mapping i : A — I is an [-indexed
set (A,1). The I-indexed set (A,1) is finite if A is finite. When ¢ is understood
from the context, we often use A for denoting the I-indexed set. For every j € I,
we define the set of all elements indexed by j: A; = {a € A | i(a) = j}. By
definition, all A; are disjoint. For an I-indexed set (A,¢) and some set B, we
define (A4,7) N B = (AN B,i|p).

For some set A, a mapping m : A — N is called a multiset over A if
> acam(a) is finite. The set of all multisets over A is denoted by MS(A).

3.2 Signatures and algebras

The idea of high-level nets is that there are different kinds of tokens, which are
often called colours. Mathematically, the tokens can come from some set which
is associated with a place. Different functions allow for manipulating them. In
order to represent these sets and functions, some syntax must be introduced.
Here, we use the approach of algebraic nets, where we use signatures for the
syntax, and the associated algebras for their underlying meaning.

Definition 1 (Signature). A signature SIG = (S, O) consists of a set of sort
symbols S (often called sorts for short) and an ST -indezed set of operation
symbols O. The set SUQO is called the set of symbols of SIG. For some signature
SIG, we denote the set of its sorts by SIC and the set of its operations by OS¢,

For some set of symbols A and some signature SIG = (S, O) the restriction
of SIG to symbols in A is SIG|4 = (SNA,ONA). Note that SIG| 4 is not always
a signature (e.g. if A contains an operation of O but not the operation sorts).

Definition 2 (Signature extension). A signature SIG' extends a signature
SIG, if for some set A : SIG'|a = SIG. This is denoted by SIG C SIG'. Let
SIG = (S,0) and SIG' = (S’,0") be two signatures with a disjoint set of sym-
bols, then we define the union SIG U SIG' = (SUS',0UO").

By definition, SIG U SIG’ is a signature, which extends SIG and SIG’.

Definition 3 (Signature homomorphism). For two signatures SIG = (S, O)
and SIG' = (S8',0"), a mapping ¢ : SUO — S"U O’ is called a signature
homomorphism, if for every s € S we have o(s) € S" and for every o € Oy, 5.
we have o(0) € O

o(s1)...0(sn)"

Definition 4 (Algebra). A SIG-algebra A assigns a carrier set to every sort
of SIG and a function to every operation of SIG.

Technically, A is a mapping such that, for every s € S, A(s) is a set and,
for every o € Oy, .5, 5,.1, A(0) is a function with A(o) : A(s1) x ... x A(sp) =
A(Sn+1).

Definition 5 (Algebra extension). Let SIG and SIG’ be two signatures with
SIG C SIG', and let A be a SIG-algebra and A’ be a SIG'-algebra. Algebra A’
extends algebra A, if A'|gsicyosic = A, written A C A’.

3.3 Variables and terms

Let SIG = (S, 0) be a signature. An S-indexed set X is a set of SIG-variables,
if X is disjoint from O. From the set of operations O of the signature and of
variables X, terms of some sort s can be constructed inductively:

Definition 6 (Terms). The sets of all SIG-terms of sort s over a set of vari-
ables X is denoted by TS'C(X). It is inductively defined as follows:

- X, C TSC(X).
— For every operation symbol o € O, .. s, s,.,, and, for every k with1 <k <n,
tr € TSIG(X), we have (o,ty, ... t,) € TSI (X).

Sn+41

When SIG is clear from the context, we also write T(X) instead of TS¢(X).
The set of all terms is T9%(X) = [J, .4 T3'%(X). Terms without variables are
called ground terms and are defined by T%/¢ = T () and by TS/¢ = TG (().
Note that, in practice, terms are written o(t1,...,t,) to make clear that the
operation is applied to the arguments. In order to emphasise the syntactical

nature of terms, we use the tuple notation (o,%1,...,t,) in all formal definitions.

Definition 7 (Compatible mapping). Let SIG and SIG' be two signatures
and o a signature homomorphism from SIG to SIG'. Let X be a set of SIG-
variables and X' be a set of SIG'-variables. A mapping & : X — X' is said to
be compatible with o if, for every variable x € X, we have {(x) € X;(S), The

mappings o and & can be canonically extended to a mapping o U € : TS19(X) —
TSIG (X/) by

— o U&(x) =&(x) for every x € X, and
—ocU&((o,t1,...,tn)) = (0(0),0 U&(t1),...,0 U&(ty,)), for every operation
symbol o € O, . and, for all terms tj, € TSI9(X).

SnSn+417

3.4 Generators

In high-level nets and high-level net modules in particular, we often have some
sorts provided, and we need to construct other sorts from them in a standard
way. For example, for a given sort s, we need a sort that represents the multiset
sorts over that sort, ms(s). We may also want to build the product sort over
some sorts (see Fig. 2 for an example). Moreover, the sets associated with these
new sorts are defined based on the sets associated with the underlying sorts. For
example, the set associated with ms(s) is the set of all multisets over A(s).

In module definitions, we also want to import sorts to be used in the module
implementation without yet knowing which concrete set will be associated with
it, since this will only be known when the module is instantiated. Still, we would
like to use these sorts and sorts built from them in the module definition. For
that purpose, we need a mechanism for constructing new sorts and operations
from some signature and a way to define their meaning. To this end, we introduce
generators. A generator defines which new sorts and operators can be constructed
out of existing sorts, and once the associated sets are known for every sort, what
the meaning of the corresponding constructed sorts and operators should be.
Since generators are needed anyway, we also use them for defining the standard
sorts, such as bool, along with their operations.

Definition 8 (Generator). A generator G = (GS, GA) consists of

— a sort generator function GS that, for any given signature SIG = (S,0),
returns a signature GS(SIG) = (8',0’) such that S C S" and O C O';
GS(SIG) is called the signature generated from SIG by the generator G;

— an algebra generator function GA that, for any SIG-algebra A, returns a
GS(SIG)-algebra such that the algebra GA(A) extends algebra A, i.e., A C
GA(A).

Throughout this paper, we will use a single generator* G’ = (GS, GA), which
will be defined in this section. The basic idea is to include, in addition to the

4 This is a very minimalistic version; there could be many more built-in sorts, generated
sorts, and operations (see ISO/IEC 15909-2 [4]); but this is beyond the scope of this
paper; our module concept will work for any generator extending this one.

existing sorts, the booleans, the associated multiset sort ms(s) for every sort s,
and all the product sorts. In order to emphasise the syntactical nature, and to
distinguish the newly constructed sorts, we use the notation (bool), (ms, s) and
(X, 81,...,58y,) for these generated sorts. Likewise, the generator will generate the
boolean constants (¢rue) and (false) and the standard operations on booleans,
the tupling operation ((),s1,...,8,), and the operation (([],s),s,...,s) which
makes a multiset out of a list of elements.

Definition 9 (Sort generator). Let SIG = (S,0) be an arbitrary signature,
then GS(SIG) = (5',0') is defined as follows:

— 8 is the least set for which the following conditions hold:
1. SC 9,
2. (bool) € ',
3. (ms,s) € 8’ for every s € S, and

(X,81,...,8n) €5 for all sorts s1,...,8, € 5.
- is the least S’-indexed set for which the following conditions hold:
0 Co,

(true), (false) € Ozbool),

(not, (bool)) € Ofypon (bool)

(o, o),)} (700D, 00) € Oy
(([;8)s8,.-,8) € 0L (ns.s) for every sort s € S', where the number of
s

(

(

o teote = Qs

18 the same in both constructs,
+, (ms, s), (ms, s)) € O]
0,81, n)eO;

)

(ms.s)(ms.s)(ms.s) JOT €veTy s € S’, and

7. on) for all s1,...,s, € 5.

1o8n (X810,
Definition 10 (Algebra generator). Let A be a SIG-algebra with SIG =
(S,0) and let GS(SIG) = (S',0"). Then we define GA(A) b

— The mapping of the sorts of GA(A) is defined as follows:
1. GA(A)|s = A|s,

2. (A)((bool)) =
3. GA(A)((ms,s)) MS(GA(A)(s)) for every sort s € §', and
4. (A)((X,81,..-,8n)) = GA(A)(s1) X ... x GA(A)(s,) for all sorts
S1y...,58, €5,
— The mapping of the operations of GA(A) is defined as follows:
1. GA(A)|o = Alo,
2. (A)((true)) = true and GA(A)((false)) = false,
3. GA(A)((not,bool)) = =, where = is the boolean negation function,
4. GA(A)((and, bool,bool)) = N and GA(A)((or,bool,bool)) =V, where A

and V are the boolean conjunction and disjunction functions,

5. GAAY((([],9),8,---,9)(a1,...,an) = [a1,...,ay], for every sort s € S’
and all ay, . ..,an € GA(A)(s); i. e. the multiset over s containing exactly
the elements a1, ..., an,,

6. GA(A)(+, (ms, s),(ms,s))) = + for every sort s € S’, where + denotes
the addition of two multisets over GA(A)(s), and

7. GA(A) (O, 815, 8n)) a1, yan) = (a1,---,a,) for all s1,...,8, €S’
and a1 € GA(A)(81),-..,an € GA(A)(sy), i.e., the usual tupling.

Note that, to avoid overly complex mathematics, we assume that all the sym-
bols used in a basic signature SIG are disjoint from symbols introduced by the
generators GS(SIG). We assume that the symbols in SIG are flat and unstruc-
tured, whereas the symbols introduced in GS(SIG) are tuples—some of them,
like (bool), are 1-tuples. Since this is just needed for making the mathematics
work, our examples will use bool for (bool) and ms(s) for (ms, s). However, we
stick to the technical notations (bool) and (ms, s) in all formal definitions.

Definition 11 (Sort generator homomorphism). A signature homomor-
phism o from some signature SIG to some signature SIG' carries over to a
signature homomorphism o€ from GS(SIG) to GS(SIG') in a canonical way:

— 1. 09(s) = o(s) for every s € S,
2. a%((bool)) = (bool),
3. 0%((ms, s)) = (ms,a%(s)) for every s € S, and
4. 09 ((X,51,...,84)) = (x,0%(51),...,0%(s,)) for all s1,...,5, €S.
— 1. 0%(0) = 0o(o) for every opemtzon o€ 0,
2. c%((true)) = (true) and o ((false)) = (false),
3. ¢%((not, (bool))) = (not, (bool)),
4. o%((and, (bool), (bool))) = (and, (bool), (bool)), and
a%((or, (bool) (bool))) = (or, (bool), (bool)),
5 0%([,s,-..,9) = (([,0% (s)) % (s),...,0%(s)) for every sort s € S,
6. UG((—l—,(ms 5), (ms,s))) = (+, (ms,0%(s)), (ms,0%(s))) for every sort
se S, and
7. 090,81, ,50) = (0,0%(s1),...,0%(sp)) for all s1,...,8, €S.

In the following, we even use the symbol ¢ instead of ¢©.

3.5 Nets, algebraic net schemes, and algebraic nets
Now we are prepared to define the basic concepts of this paper.

Definition 12 (Net). A net N = (P, T, F) consists of two disjoint sets P and
T and a set of arcs F C (P xT)U(T x P).

For a clear separation between syntax and semantics, we distinguish between
algebraic net schemes and algebraic nets.

Definition 13 (Algebraic net scheme). An algebraic net scheme is a tuple
Y = (N, SIG, X, sort,l,c,m) consisting of:

1. anet N=(P,T,F),
2. a signature SIG,
3. a set of GS(SIG)-variables X,

4. a place sort mapping sort : P — SES(SIG)

5. an arc label mapping | : F — TE3SI9)(X) such that:

— for all (p,t) € F N (P x T) : ((p,1)) € Tatsoedy (X)

— for all (t,p) € FN(T x P) : 1((t,p)) € T(a5i) (X)),
6. a transition condition mapping ¢ : T — ’]I’(besgm)(X),

7. an initial marking m : P — TSI sych that, m(p) € T(Gri(iift)(p)) for

every place p € P.

Definition 14 (Algebraic net). An algebraic net (X, .A) is an algebraic net
scheme X equipped with a SIG-algebra A.

In this paper, we focus on the definition of modules and how they can be
used to define other modules. We are not so much interested in their actual
behaviour. Therefore, we do not define the firing rule for algebraic nets here.
A formalisation of the abstraction in terms of the behaviour of a module is an
interesting endeavour—but much beyond the scope of this paper.

4 Modules interfaces and implementation

In this section, we formalise the notion of module interfaces and their implemen-
tation, informally introduced in Sect. 2. The module interface describes which
places and transitions are imported or exported, and which sort and operation
symbols are imported or exported on a purely syntactical level. Moreover, the
interface defines the sort of each of the import and export places.

Definition 15 (Module interface).

A module interface Z = ((SIGy, Pr,T1), (SIGo, Po,To), sortio) consists of two
signatures SIGy and SIGo with disjoint sets of symbols, four pairwise disjoint
sets Pr, Tr, Po, To and a mapping sortio : Pr U Po — GGS(SIGrUSIGO),

We call (SIG, P;,Tr) the import interface, SIG the imported signature, Py
the imported places, and Tt the imported transitions. We call (SIGo, Po,To)
the export interface, SIGo the exported signature, Po the exported places, and
To the exported transitions. The mapping sort;o assigns a sort to every place
of the interface. Note that this can be any sort that can be generated from the
sorts of the import and export signatures.

Definition 16 (Module implementation).
Let T = ((SIGy, Pr,T1), (SIGo, Po,To), sortio) be a module interface. Then, a
module implementation M = (Z, X, A) of interface Z, consists of:

1. the interface 7 itself,

2. an algebraic net scheme ¥ = (N, SIG, X, sort,l,c,m) with N = (P,T, F)
where SIG = (S,0) extends SIG; and SIGo such that SIG restricted to
the non-imported part, SIG \ SIG; = SIG|g\ gsie;yo\051¢1, 15 a signature,
PO PUPy, TOTrUTp, and sort D sortro,

3. a SIG\ SIG-algebra A.

Note that this definition does not require that A is a SIG-algebra since some
symbols from SIG are imported from SIG;. The interpretation of the symbols
from SIG will come from the imported symbols when the module is instantiated.
In order to assign the meaning to the remaining symbols, we require SIG \ SIG
to be a signature, and A to be a SIG \ SIG-algebra. In general, (X,.A) is not
an algebraic net; however, it is an algebraic net if SIG; is empty.

5 Modules definitions and implementations

Up to now, we have defined module interfaces and their implementation. The
implementation was given by a monolithic algebraic net. The purpose of modules,
however, is to use instances of some modules for defining a system or other
modules, which we call module definitions. In this section, the notion of module
definition as well as its meaning is formalised.

5.1 Module definition

Let J be a set of module interfaces, which can then be used for defining another
module. For each Z € J, we denote: T = ((SIGE, PE, TF), (SIGS, P5, TE), sortk,),
SIG¥ = (S%,0%) and SIGE = (S§,0%).

First, we introduce a notation for module instances resp. the use of modules.

Definition 17 (Module instances and uses). For somen € N and for every
kEe{l,....n}, letTy, € J. Then, U = {(1,Z1),...,(n, L)} is a set of n module
instances of J. The set U is called the module uses.

Note that the interfaces Z; are not required to be different since the same
module may be used multiple times in another module definition. Therefore, in
order to be able to distinguish different instances of the same module, a different
number is associated with each of them. This is the case in the introductory
example of Sect. 2, where three copies of the Channel module are used.

Definition 18 (Module definition). A module definition

D =(Z,2,U, (sik) =1, Pir)j=1> (tir)i=1, (50k)i—1, (POR) =1, (tor)i—1, A) for in-
terface T over some module interfaces J, consists of the following:

1. its own interface Z = ((SIGy, P1,Tr), (SIGo, Po,To), sortio),
2. an algebraic net scheme X' = (N, SIG, X, sort,l,c,m) with signature SIG =
(S,0) and net N = (P,T,F),
3. a set of module instances U = {(1,Z1),...,(n,Z,)} of J,
4. for each k € {1,...,n},
(a) a signature homomorphism siy, : SIG? — SIG,
(b) an injective signature homomorphism soy, : SIG%"' — SIG\ SIGY,
(¢) a mapping piy, : PII’C — P,
(d) an injective mapping poy, : ng — P\ Py,

(e) a mapping tiy, : TII’“ — T,
(f) an injective mapping toy : TCI)’“ — T\ Ty,
such that the co-domains of all homomorphisms soy are pairwise disjoint, the
co-domains of all mappings poy are pairwise disjoint, and the co-domains of
all mappings toy, are pairwise disjoint. Moreover, for every k and for every
pE PII’“, we have sik(sortﬁ“) (p)) = sort(pix(p)), and for every p € Pg’“, we
have sog(sort1h(p)) = sort(zpok(p)), such that SIGp = (5',0") with SI’ =
S\ (55761 U UL, s01(S5765)) and O = O\ (05161 U, 50, (0518"))
s a signature, and

5. A is a SIGp-algebra.

Basically, the module definition consists of an algebraic net scheme Y, where
the homomorphisms and mappings (see condition 4) from the interfaces of the
used module instances U to X indicate how the instances of the modules are
embedded into Y. This concerns the embedding of places and transitions as
well as the use of the different symbols of the signatures. Note that if an export
symbol of a module instance is mapped to a symbol of X', this symbol will get its
meaning from this module instance. Therefore, condition 4 requires that these
mappings do not overlap. The meaning of the symbols of the import signature
will be defined when the module is used; therefore, the module definition itself
does not need to give a definition to these symbols. Therefore, the algebra A does
not need to assign a meaning for the symbols coming from the import signature
of the defined module or from the export symbols of the used modules. The
remaining part of the signature, denoted by SIGp in the above definition, must
be a signature and A must be a SIG p-algebra (condition 5).

5.2 Denoted implementation

In this section, we will define the module implementation inferred from a module
definition, i.e., based on other modules. Let us consider a module definition

D= (Ia XU, (Sik)Z:lv (pik);;:lv (tikylz:lv (Sok)Z:lﬂ (pok)Z:lv (tok)Z:la A)

as defined in Def. 18 using module instances U = {(1,Z;),...,(n,Z,)}. In order
to define the module implementation, the implementations of the used modules
must be known. Let us assume that for each k € {1,...,n}, My = (T, Xk, Ax)
is an implementation for interface Z,. The basic idea of the module defined by
D is to make a disjoint union of all signatures and nets of the implementations
and the module definition itself, and to transform the arc, place, and transition
labels accordingly. However, some parts need to be identified, as defined by the
homomorphism between the signatures and the mappings from the interface
places and transitions to the places and transitions of the module definition.

We start with defining the signature of the module implementation, which
will be denoted with SIG. First, we summarise the available signatures:

1. The signature SIG = (S, O) from the module definition.

2. For every use of a module (k,Zy), there are two disjoint signatures ST G%‘“ and
SIGE . We define SIG™ = SIGT* U SIGE . Moreover, there is a signature
homomorphism fj, : SIGT* — SIG defined by f, = soi, U siy.

3. For every use of a module (k,Zj), the implementation My = (Zy, X, Ax)
has a signature SIGj and variables Xj. By definition SIG** C SIG) holds.

Definition 19 (Signature SIG and homomorphisms o).

For each k € {1,...,n}, the mapping oy is a signature homomorphism from
SIGy to @, defined as follows: for every x € SIGy, for which fi(x) is defined:
orp(x) = fr(x); for every other symbol x € SIGy : or(x) = (k,x). We define
SIG = (5,0) by S =SU Ur—, ox(S519%) and 0O=0U Ur—, 0k (O51%), where

the arities carry over by interpreting oy as a signature homomorphism.

Note that, in the definition of oy (z), the pair (k,z) is used to make this
symbol of SIG), different from all the other symbols. The signature SIG will be
the signature of the defined module implementation. The signature homomor-
phisms o, relate the signatures of the implementations to SIG; they will be used
to transfer the labels from the different module implementations to the defined
module implementation.

The variables from the different modules are made disjoint in the same way.

Definition 20 (Variables)A() For every k € {1,...,n}, the mapping & is
defined by: &k(x) = (k,x) for every variable x € Xy. The set of all variables is
defined by X = X UUp_; & (Xk).

The meaning of the non-imported symbols of SIG is defined by an SIG \SIG -
algebra A. Basically, this meaning carries over from the other algebras via the
respective homomorphisms.

Definition 21 (Algebra .,Zl\) The SIG \ SIG1-algebra A associated with A is
defined as follows: If A(x) is defined, then A(x) = A(z); if Ax(x) is defined,
then A(ok(x)) = Ag(z).

By the conditions imposed on the algebras and the signature homomor-
phisms, this definition of A is unique and it is a SIG \ SIG-algebra.

For experts, SIG and A are pushout constructions in an appropriate category;
but the categorical constructions are beyond the scope of this paper.

Next, we define the places and transitions of the module implementation,
which are basically a disjoint union of all the places and transitions of the used
module implementations and the places and transitions of the module definition
itself. The places and transitions identified by the mappings from the import and
export interfaces will be merged. First, we summarise what we already know:

1. The net N = (P, T, F) of the module definition. The set of all nodes of that
netis Z=PUT.

2. For every use of a module (k,Zy), let ZZ* be the set of nodes of the interface
and let Z;, be the set of nodes of the implementation, Z7* C Z. There is a
mapping g : Z2* — Z, which is defined by g, = pij U poy, U tij U toy.

Definition 22 (Places P and transitions JA“) For every k € {1,...n}, a
mapping ey is defined as follows: ex(x) = gi(z) for every x € Z7+, and ey (x) =
(k,x) for every x € Zy \ Z%+. The set of places of the module implementation
defined by the module definition is defined by P=rPruU Ur_, ex(Px) and the set
of transitions is defined by T = T U Un_, ex(Tk).

Now we have all the ingredients for defining the module implementation.
Basically, the mappings of the module instances carry over from the module
implementations via the homomorphism:

Definition 23 (Defined module implementation).
Let D = (Iv XU, (Sik’)gzlv (pik)Z:lﬁ (tik)Z:l’ (Sok);clzlv (pok)Z:lv (tok)}g:h 'A) be
a module definition with module uses U = {(1,Z4),...,(n,Z,)} and module im-
plementations My = (L, Xk, Ay) for each k.

The module implementation defined by D is M = (I,E’, A) where 5 =

~N — N — o~

F=FulUi_{(en(@),ex(®)) | (z,y) € Ax}.

~

The mappings 1, sort, ¢, and im are defined as follows:
— U(f) = U(f) for every arc f € F and A(f) = o U&(lg(f)) for every arc

— sort(p) = sort(p) for every place p € P and sort(ex(p)) = ox(sorty(p)) for
every place p € Py.

— for every transition t € T, for which there exists no k with t € ey, (Tg), we
define ¢(t) = c(t); for every transition t € T\ TF we define ¢(ex(t)) =
o U&k(cx(t))-

— for every place p € P, for which there exists no k with p € ek(Pg), we
define m(p) = m(p); for every place p € P¥\ P} we define m(ex(p)) =
o U &k(mi(p))-

As mentioned earlier, Aisa SIG \ SIG-algebra. By the conditions imposed
on the module definitions, [, sort, ¢, and i are properly defined. Altogether, the
defined module implementation is uniquely defined:

Theorem 1. For an interface T = ((SIG1, Pr,Tr), (SIGo, Po,To), sortt,)
and a module definition D for T with module uses U = {(1,Z1),...,(n,Z,)}
and module implementations My, M= (I,f,fl\) 1s a uniquely defined module
implementation. If SIG| is empty, then (f,ﬁ) is an algebraic net.

6 Example

Here, we present an example of a railway case study described in a modular way

in [12]. It is now slightly changed so as to be consistent with our notations.
The example models a toy railway composed of several track sections, as

shown in Fig. 5, either connected directly or via a switch. Several trains can

switch4

switchl B3 B7

switch2 B6 B10 switch3

Fig. 5. The tracks of the model railway.

circulate at the same time, and the routing policy of trains should ensure that
there is no collision and the system is always running. The modular design of
such a system was the scope of [12] and lead to identifying 2 modules: MoveSec
models the moves between two directly connected tracks while Switch is a switch
connecting three track sections. In both modules, each place corresponds to a
track section, which may or may not be occupied by a train. The transitions
reflect the possible moves. These two modules are depicted in Fig. 6 and are
used by a top-level module, which captures the whole system, in Fig. 7.

We have chosen to define the track sections within the Switch modules
since the switch is the most elaborate part of the system. Therefore the places
in module Switch exports its places. Conversely, module MoveSec imports its
places, as they are defined elsewhere.

Other choices in this particular example could have been made for import
and export places. For instance, the tracks of a toy railway are asymmetric
since for connecting pieces, one side of a track gets inside (the other side of)
another track. This easily fits an imported place and an exported place scheme
for the MoveSec module. But this also leads to two types of switch modules: one
exporting places T1 and T2 and importing 0, and the other doing the converse.

The choice we made illustrates parameterisation of modules. Note that mod-
ule Switch imports a direction operator dir, which allows for using the same
module to represent all switches, even though they operate in symmetrical ways.
The operator is instantiated when connecting the Switch module, as shown in
Fig. 7. It then takes value ¢l for switches switchl and switch3, and value acl
for switches switch2 and switch4.

Finally, the sorts and operators are defined in the top-level module and can
be used consistently by all modules. This can be considered as a global definition.
A Train on a track section is identified by a TrainNb, and a can move in a given

MoveSec
import Sort: Train
import Sort: TrainNb
import Sort: Direction
import Operator: none
output Sort: Train
import Operator: cl
output Sort: Direction
import Operator: acl
output Sort: Direction
import Operator: ()
input Sorts: TrainNb, Direction
output Sort: Train
S1: Train S2: Train

Switch
import Sort: Train
import Sort: TrainNb
import Sort: Direction
import Operator: none
output Sort: Train
import Operator: dir
output Sort: Direction
import Operator: !
input Sorts: Direction
output Sort: Direction
import Operator: ()
input Sorts: TrainNb, Direction
output Sort: Train
T1: Train O: Train T2: Train

Q

var t: TrainNb

(a) The MoveSec module

(b) The Switch module

Fig. 6. The railway example modules.

Direction. The operators consist of 3 constants: none indicating that no train is
on a track section, c1 and acl giving the possible directions of trains (clockwise
and anticlockwise). The unary operator ! is intended to change a direction into
the opposite one. Finally, () forms a pair with a train identity and a direction
in which the train moves, detailing a train present on a track section.

7 Discussion and extensions

In this section, we briefly discuss our module concept and some issues that should
be considered for the work on Part 3 of the ISO/IEC-15909 standard.

7.1 Abstraction and refinement

One of the main objectives of using modular design is to handle abstraction
and refinement features. Our proposal fits with such a scheme by separating the
module definition which lies at an abstract level and the module implementation.
Moreover, modules can import constructs from others and provide constructs to
be used by others.

Declarations

Sorts Operators
Train none: Train
TrainNb cl: Direction
Direction acl: Direction

I: Direction,Direction
(): TrainNb, Direction, Train

B3BT: MoveSec

switch'lz Switch g S0 switcl'14: Switch
dir=cl B B AR R dir=acl
T (O ~Om
0 Q
/Q T2 @ } B4B8: MoveSec 3 O T2 k
/) T ’= ’= -7 !
,)82 S1v 7 .
, |
B1B2: MoveSec Bl/’iB12: MoveSec
4 /
A,J‘Sl 82 J st S2)
< -) e
/ B5B9: MoveSec K
i - o aos J
sv&fltcl.ﬁ. Switch el g7 sw1tch§. Switch
, dir=acl B R dir=cl)
bo " oo
(0] _ (0]
T2 @ 1 B6B10: MoveSec | O T2
INOrstos2i]

Fig. 7. The top-level net model of the model railway.

Refinement can be pursued further, by detailing the functioning of a module
through other new modules. To cope with such a process, it will be most helpful
to provide a hierarchy of modules, showing how they are embedded in one an-
other. The current module definitions allow us to build modules in a hierarchical
way. However, for practical use, a designer should be provided with a view of
the hierarchy (as in e.g., Hierarchical CPNs).

The example of Sect. 6 also shows that parameterisation of modules is pos-
sible. This is a key feature for reuse of modules in different contexts.

7.2 Aggregation of label information

In our formalisation, some annotations of places and transitions are ignored. For
example, the initial marking of a place is always taken from the module where
the place is actually defined. If a module imports a place, the module can define
an initial marking. But this marking is irrelevant since it will come from wherever
the imported place is defined. The same holds for the transition condition.

For the transition condition, it might make sense to use a conjunction of all
transition conditions attached to the transition. As concerns the initial marking,
it might make sense to use the sum of all initial markings. Since we started from
the modular PNML semantics, we did not include that here.

Since such an aggregation mechanism seems to be reasonable in at least some
cases, aggregation should be considered for the upcoming standard. However, this

will introduce some technical difficulties. Not all annotations can be aggregated
in a reasonable way: clearly the aggregation function would require an associative
and commutative operation with a neutral element for making the aggregation
independent from a specific order. Even if the operation is associative and com-
mutative, its syntactical representation is not. Therefore, there would not be a
canonical syntactical representation for the defined module implementation.
The aggregation mechanism could be even more advanced. For example, the
defining module could provide the operation that is used for the aggregation.
This way, it would be up to the defining module to decide whether and how
particular labels of modules using it should be aggregated. What is reasonable,
necessary, easily usable, and semantically sound is subject to future research.

7.3 Export of variables

In our formalisation, modules can export and import only sort and operation
symbols. It does not allow for exporting variables. In the case of synchronous
communication via merging of transitions, it might, however, make sense to use
a common variable for such transitions to exchange values between different
partners during a synchronisation. Therefore, it might be worthwhile to also
export and import some of the variables along with a transition.

A formalisation, however, requires that variables are defined locally to a tran-
sition as for example proposed by Schmidt [13]. The formalisation is a bit more
technical, but we believe that this concept should be included in the standard.

7.4 Node connection policies

In our definition of export and import nodes, the other modules could connect
to that node as to any other node. In some cases, some uses might not be
intended at all. In our introductory example from Fig. 1, it does not make much
sense for a module using the Channel module to add a token to export place p2.
Though adding a token does not do much harm here, the module might want to
restrict the use of this place so that tokens can only be removed from that place.
Right now such a restriction cannot be enforced and would just be a textual
recommendation of the use of a node.

It would be nice if a module could provide some composition policies that
state in which way a node may be used, in order to define and to enforce com-
munication paradigms. What exactly should be expressible by such policies and
how a language for expressing such policies should look like, requires further
investigation.

7.5 Generators

The key mechanism for having the module concept work is the generator. This
way, it is possible to construct standard sorts out of existing sorts without even
knowing the underlying algebra yet.

Up to now, there is only one fixed generator, which supports the standard
generic constructs on sorts like multisets or products over sorts. It is not yet
possible to define user-defined generic constructs. Of course, it would be useful to
allow the extension of this generator within a module definition, so that a module
could define new generic constructs. To this end, we could use existing theory
from algebraic specifications. The question, however, is how much expressivity
is needed and worth the effort to be included in the standard.

The idea of generators could also serve a different purpose: As we have seen,
we used the generator for defining the built-in sorts and the standard constructs.
Actually, many variants of high-level Petri nets differ only in these standard
sorts and constructs. One example are well-formed nets [14], which are currently
included as a special version in Part 1 of ISO/IEC 15909 (renamed symmetric
nets). Generators could ease the definition of sub-classes of high-level Petri nets.

8 Related work

Many modular constructs have been proposed in the literature. Our aim is to
propose a framework capturing most of these mechanisms. In this section, we
show how such mechanisms are dealt with.

Our approach extends the work in [5] by providing a formal and flexible def-
inition. The communication mechanisms proposed in [15] are place fusion and
transition fusion. They are easily handled by place and transition import/export
features. The main difference with our proposal is the asymmetry between im-
porting and exporting, whereas plain fusion is symmetric. But this is no restric-
tion.

One of the earliest and most widespread modular approach is Hierarchical
Coloured Petri Nets [16] and their implementation within CPNTooLs [6]. They
also use the concept of port places, which can be defined as input, output or
both. The structuring of nets is presented via a hierarchy of modules. Such nets
also use the place fusion concept, which is captured by our proposal.

9 Conclusion

In this paper, we have shown that there is a formal foundation for the concepts of
modular PNML. We also identified some issues that should be considered and re-
solved in the standardisation of the module concept in Part 3 of ISO/IEC 15909.
All kinds of proposals, suggestions, and concerns are most welcome—as is any
active participation in the standardisation process.

Acknowledgements We would like to thank Anne Haxthausen and Hubert Baumeister
for some helpful discussions on the category theory constructions behind the concepts of
this paper. We hope that we, eventually, will write a joint paper from that perspective.

References

10.

11.

12.

13.

14.

15.

16.

ISO/IEC: Software and Systems Engineering — High-level Petri Nets, Part 1:
Concepts, Definitions and Graphical Notation, International Standard ISO/TEC
15909 (2004)

. Kindler, E., Weber, M.: A universal module concept for Petri nets — an

implementation-oriented approach. Informatik-Bericht 150, Humboldt-Universitét
zu Berlin, Institut fiir Informatik (2001)

Weber, M., Kindler, E.: The Petri Net Markup Language. In Ehrig, H., Reisig,
W., Rozenberg, G., Weber, H., eds.: Petri Net Technologies for Modeling Commu-
nication Based Systems. Volume 2472 of LNCS. Springer (2003) 124-144
ISO/JTC1/SCT7/WG19: Software and Systems Engineering — High-level Petri Nets,
Part 2: Transfer Format. FDIS 15909-2 (under ballot), v. 1.3.6, ISO/IEC (2008)
Kindler, E.: Modular PNML revisited: Some ideas for strict typing. In: Proc.
AWPN 2007, Koblenz, Germany. (2007)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. Journal of Software Tools for
Technology Transfer 9(3-4) (2007) 213-254

Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specifications 1, Equations and
Initial Semantics. Volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag (1985)

Berthomieu, B., Choquet, N., Colin, C., Loyer, B., Martin, J., Mauboussin, A.:
Abstract Data Nets combining Petri nets and abstract data types for high level
specification of distributed systems. In: Proceedings of VII European Workshop
on Application and Theory of Petri Nets. (1986)

Vautherin, J.: Parallel systems specifications with coloured Petri nets and algebraic
specifications. In Rozenberg, G., ed.: Advances in Petri Nets. Volume 266 of LNCS.
Springer-Verlag (1987) 293-308

Billington, J.: Many-sorted high-level nets. In: Proceedings of the 3rd International
Workshop on Petri Nets and Performance Models, IEEE Computer Society Press
(1989) 166-179

Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Science
80 (1991) 1-34

Choppy, C., Petrucci, L., Reggio, G.: A modelling approach with coloured Petri
nets. In: Proc. 13th Int. Conf. on Reliable Software Technologies—Ada-Europe,
Venice, Italy. Volume 5026 of LNCS., Springer-Verlag (2008) 73-86

Schmidt, K.: Verification of siphons and traps for algebraic Petri nets. In Azéma, P.,
Balbo, G., eds.: Application and Theory of Petri Nets 1997, Internat. Conference,
Proceedings. Volume 1248 of LNCS., Springer-Verlag (1997) 427-446

Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured
nets and their symbolic reachability graph. In Jensen, K., Rozenberg, G., eds.:
Petri Nets: Theory and Application. Springer-Verlag (1991) 373-396
Christensen, S., Petrucci, L.: Modular analysis of Petri nets. The Computer Journal
43(3) (2000) 224242

Jensen, K.: Coloured Petri Nets: Basic concepts, analysis methods and practical
use. Volume 1: basic concepts. Monographs in Theoretical Computer Science.
Springer-Verlag (1992)

