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99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE
e-mail: petrucci@lipn.univ-paris13.fr

Received: date / Revised version: date

Abstract. This paper extends modular state space con-
struction for concurrent systems to cater for timed sys-
tems. It identifies different forms of timed state space
and presents algorithms for computing them. These in-
clude uniprocessor algorithms inspired by conservative
and optimistic approaches to discrete event simulation,
and also a distributed algorithm. The paper discusses
implementation issues and performance results for a sim-
ple case study.

1 Introduction

State space exploration is a convenient technique for the
analysis of concurrent and distributed systems. Its chief
disadvantage is the so-called state space explosion prob-
lem where the size of the state space can grow exponen-
tially in the size of the system.

One way to alleviate the state space explosion prob-
lem is to use modular analysis, which takes advantage
of the modular structure of a system specification. Here,
the internal activity of the modules is explored inde-
pendently rather than in an interleaved fashion. Exper-
iments have indicated [15] that modular analysis can
produce a significant reduction in the size of the state
space, particularly for systems where the modules ex-
hibit strong cohesion and weak coupling.

This paper extends modular state space exploration [4,
10] to timed systems. The introduction of time raises an
interesting challenge since, by its very nature, time is a
global entity rather than having local significance. This
paper examines whether modular analysis algorithms
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can be modified to cater for time and still reap the ben-
efits already demonstrated for untimed systems [10,15].

This work applies to Coloured Petri nets as well as
to Place/Transition nets. For the sake of readability, we
present the algorithms for Place/Transition nets. Their
extension to CP-nets is straightforward.

The paper is organised as follows. Section 2 presents
an example of a timed system — specifically a sliding
window protocol. This serves to introduce the notions
associated with a timed system, and also provide an ex-
ample for which the benefits of modular state space ex-
ploration can later be demonstrated. Section 3 presents
preliminary definitions of timed and modular Petri nets.
Section 4 provides uniprocessor algorithms for modular
state space exploration of timed systems, while Section 5
provides a distributed algorithm. Section 6 discusses im-
plementation issues for the timed modular state space
techique. In Section 7 we present experimental results
obtained by applying this technique to the case study of
Section 2. The conclusions are presented in Section 9.

2 A Timed Protocol Example

In this section, we describe an example derived from the
Timed Protocol in [8]. Our model is presented in figure 1.

The protocol in [8] is a stop-and-wait protocol, i.e. a
message is sent only if the previous one has been ac-
knowledged. The model in figure 1 includes a sliding
window and caters for loss of messages or acknowledge-
ments.

The model is composed of four modules represent-
ing the sender, the message channel of the network,
the acknowledgement channel of the network and the
receiver. They are displayed on the left-hand side, the
center and the right-hand side of the figure, respectively.
The four modules communicate with their neighbours
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Fig. 1. Timed Protocol example

color INT = int timed;

color DATA = string;

color INTxDATA = product INT * DATA;

color WIN = product INT * INT;

color NetDelay = int with 3..5 declare ms;

var n, k, lo, hi : INT;

var p, str : DATA;

var d : NetDelay;

val stop = "#";

val Wsend = 2; val Wrecv = 2;

val Tmes = 8; val Tack = 4;

val Twait = 72; val Tmul = 8;

Fig. 2. Declarations fot the Timed Protocol example

through fused transitions: Send Packet, Receive Packet,
Send Ack and Receive Ack.

The data manipulated are described in figure 2. Colour
sets are defined: INT is the set of integers with a times-
tamp, DATA contains strings to represent the messages in-
side the packets transmitted over the network, INTxDATA
is pairs of elements of the previous two types, WIN is pairs
of integers, and finally NetDelay allows for a range of
different propagation delays over the network. A prop-
agation delay is given by an element of NetDelay mul-
tiplied by the factor Tmul. Then, variables are declared,
typed by these colour sets. Some constants are also de-
fined: stop is the string terminating the message to send,
Wsend and Wrecv are the sizes of the sending and re-
ceiving windows respectively, Tmes, Tack are the times
to process each message and acknowledgement, respec-
tively, while Twait is a timeout retransmission delay.

The sender module can only send packets or receive
acknowledgements. The packets to send are initially stored

in place Send. They are represented by a pair (n,p)

where n is the packet number and p the data. We can
refer to a packet consisting of the sequence number 1 and
data “a”, available at time 0 by the notation (1,“a”)@0.
The sending operation takes some time as indicated by
the @+Tmes label attached to transition Send Packet.
When a packet is sent, its token remains in place Send,
but its timestamp is incremented by the timeout re-
transmission delay Twait. With Twait set to 80 and
Tmes set to 8, the token (1,“a”)@0 would be replaced
by (1,“a”)@Tmes+Twait=(1,“a”)@88. The packets that
can be sent must have a number comprised between the
lowest not yet acknowledged (variable lo) and the first
non-sent packet (hi+1). Moreover, the difference be-
tween these two bounds cannot exceed the window size
Wsend. These conditions are all gathered in the guard
of transition Send Packet. The lower and upper bounds
are stored as a pair (lo,hi) in place NextSend.
The reception of an acknowledgement (transition Receive

Ack) takes some time specified by a constant Tack. This
is expressed by attaching @+Tack to the transition. The
values of the bounds in place NextSend are updated if
a message with a number n greater than lo is acknowl-
edged. (Note that in this simple case study, we do not
consider cyclic sequence numbers.)

The network stores packets sent in place A. Then, it
can either lose them (transition LoseP) or transmit them
(transition Transmit Packet). In that case, a delay cor-
responding to the time spent for transmission is applied
to the packet, denoted (n, p)@ + Tmul ∗ d. The packet
is then ready to be received. A similar scheme is applied
to the acknowledgements. The main difference is that an
acknowledgement is put in the network only if the packet
n has not yet been acknowledged. This is indicated by
the term associated with the arc from transition Send

Ack to place C.
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Finally, the module Receiver can receive packets num-
bered from the first expected one (lo) up to the size
of the reception window (hi=lo+Wrecv-1). (Note that
this allows for packets to arrive out of sequence.) Such a
received packet is stored in place Buffer until the pro-
cessing time Tmes has elapsed. Moreover, if the message
is not the first one expected (n>lo), an acknowledge-
ment numbered lo is prepared in place SendAck. This
informs the sender that the number of the next message
expected is lo. When a packet is in the receiver buffer, it
can effectively be accepted and processed, via transition
Deliver Packet. If it has a sequence number less than
lo, then it has already been delivered and this is a du-
plicate that needs to be discarded. If its sequence num-
ber is equal to lo, then it is delivered and the receiving
window is advanced — the contents p of the packet are
concatenated with the contents previously received, thus
forming a string stored in place Received; the receiving
window is updated by incrementing both bounds; and
an acknowledgement for the new lower bound (n+1) is
prepared. When an acknowledgement is sitting in place
SendAck, it can be transmitted to the sender via the
network module.

3 Background

We commence with some modified definitions of Petri
nets and their state spaces. Adapting the notation of
Jensen [7], we write 5@2 + 2@3 for 5 tokens (or values)
available from time 2 and 2 tokens available from time
3. If we remove from this multiset, 3 tokens at time 4,
we could end up with 4@2 or 2@2 + 2@3 or some other
combination. We capture these notions formally as fol-
lows:

Definition 1. A time set TS is a set of numeric values.
For much of this paper, the time values will be integral,
i.e. TS = N, but in general they could be positive real
numbers, i.e. TS = R

+. Markings and arc inscriptions
will be given by multisets over TS, written as TSMS.
We also extend operations over multisets to take time
into account:

1. Given m1, m2 ∈ TSMS , m1 ≥T m2 iff m2 = ∅ or
∃m′

1, m
′

2 ∈ TSMS , m1i, m2i ∈ TS such that m1 =
m′

1 + 1@m1i and m2 = m′

2 + 1@m2i and m1i ≤ m2i

and m′

1 ≥T m′

2.
2. Given m1, m2, m3 ∈ TSMS , m1−T m2 = m3 iff m2 =

∅ and m1 = m3 or ∃m′

1, m
′

2 ∈ TSMS , m1i, m2i ∈ TS

such that m1 = m′

1 + 1@m1i and m2 = m′

2 + 1@m2i

and m1i ≤ m2i and m′

1 −T m′

2 = m3.
3. Given m1, m2, m3 ∈ TSMS , m1 +T m2 = m3 iff m1 +

m2 = m3.
4. Given m ∈ TSMS and k ∈ TS,

k +T m =
∑

mi∈m
1@(k + mi) and

k −T m =
∑

mi∈m
1@(k − mi).

The comparison operator is interpreted as the mul-
tiset m1 having elements which have been accessible for
at least as long as the demands specified by m2. In other
words, it must be possible to pair elements of m2 with
elements of m1 such that the elements of m1 are less
than those of m2, i.e. they have been accessible longer
than the requirements. This interpretation of compari-
son is then used to define subtraction (between timed
multisets) — m1 −T m2 is only defined if m1 ≥T m2.
In general, m1 −T m2 is not uniquely defined unless we
insist that the element m1i is always chosen to be the
maximum value that is less than the corresponding m2i.
This is the approach taken by Jensen [7] in order to en-
sure that (m1−T m2)−T m3 = (m1−T m3)−T m2 which
is required for the diamond rule to hold. For complete-
ness, we define addition of timed multisets but this is
the same as multiset addition. Adding and subtracting
multisets to scalars is similar to the scaling function of
van der Aalst [1].

Definition 2. A Timed Petri Net is a quadruple
PN = (P, T, W, M0), where P is a finite set of places, T

is a finite set of transitions such that T ∩ P = ∅, W is
the arc weight function mapping from (P×T )∪(T×P )
into TSMS , and M0 is the initial marking, namely a
function mapping from P into TSMS .

For a Timed Petri Net, each token has a time at-
tribute, which indicates the earliest time that it is acces-
sible. The output arcs of a transition indicate the time
delays for generated tokens — an output arc with the
inscription 5@2 would indicate that 5 tokens are added
to a place and they will become accessible 2 units of time
in the future. We allow similar inscriptions on input arcs
— an inscription 5@2 would indicate the consumption
of 5 tokens which have been accessible since (at least) 2
units of time in the past.

It would be possible to specify time delays only on
the input arcs or only on the output arcs. If time de-
lays are only specified on output arcs, then the time at
which a transition can fire depends solely on the acces-
sibility of the tokens. If time delays are only specified
on the input arcs, then the time at which a transition
can fire depends on transition-specific information. Our
approach has the advantage of symmetry and general-
ity. By contrast, the approaches of van der Aalst [1] and
Jensen [7] only specify delays on output arcs.

Definition 3. A marking is a function M mapping
from P into TSMS . The set of all markings is denoted
by M. A transition t is time-enabled at time k in a
marking M , denoted by M [t〉k, iff ∀p ∈ P : M(p) ≥T

k−T W (p, t). When a transition t is enabled in a marking
M1 at time k, it may occur, changing the marking M1

to another marking M2, defined by: ∀p ∈ P : M2(p) =
(M1(p) −T (k −T W (p, t))) +T (k +T W (t, p)). This is
denoted by M1[t〉kM2. The set of markings reachable

from a marking M , denoted [M〉, is given by the smallest
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set satisfying M ∈ [M〉 and M ′ ∈ [M〉 ∧M ′[t〉kM ′′ =⇒
M ′′ ∈ [M〉.

Definition 4. The timed state space for a Timed
Petri Net PN = (P, T, W, M0) is a pair: TSS = (V, E)
where V = [M0〉 and E =

⋃
m∈V

{(m, t, m′)k | m[t〉km′}.

It is common to require that timed transitions fire
at the earliest possible time of enabling. Accordingly, we
define an earliest time state space.

Definition 5. The earliest time state space for a
Timed Petri Net PN = (P, T, W, M0) is a pair:
ESS = (V, E) where V = [M0〉 and
E =

⋃
m∈V

{(m, t, m′)k | m[t〉km′, 6 ∃k′ < k : m[t〉k′}.

Finally, we define a reduced earliest time state space
as a graph where the transitions in conflict at any given
marking all have the same time.

Definition 6. The reduced earliest time state space

for a Timed Petri Net PN = (P, T, W, M0) is a pair:
RSS = (V, E) where V = [M0〉 and
E =

⋃
m∈V

{(m, t, m′)k | m[t〉km′, 6 ∃t′, k′ < k : m[t′〉k′}.

Note that t′ could be t firing at an earlier time.
Note that the standard definition of state spaces for

timed systems (as in Design/CPN [5] for example) are
equivalent to our definition of a reduced earliest time
state space. Unlike Jensen, however, we do not attach a
time to a marking (to indicate the time of firing of the
last transition), and then require that subsequent tran-
sitions should have a greater or equal time. This con-
straint is imposed to ensure that time cannot go back-
wards. Thus, if a marking M0 enables independent tran-
sitions t1 at time 2 and t2 at time 5, then our definition
of ESS would allow t1 to be fired at time 2 followed by
t2 at time 5, or vice versa. With Jensen’s constraint, the
first alternative would still apply, but the second would
have t1 firing at time 5 after t2. Our approach is some-
what anomalous, but we retain it because the anomalies
will be eliminated in forming a RSS — t1 will not be
allowed to fire after t2. Furthermore, for a modular sys-
tem, it will be necessary to consider an ESS as a stepping
stone to a RSS , and the standard unfolding of an earliest
time modular state space will produce an ESS .

It should also be noted that, for a timed net, the ESS
is a subgraph of the TSS since some edges are removed,
and this may also make some nodes unreachable. Sim-
ilarly, the RSS is a subgraph of the ESS. A partially
reduced earliest time state space is also possible. This
would be a subgraph of the ESS and a supergraph of
the RSS.

Definition 7. A Timed Modular Petri Net is a pair
MN = (S,TF ), where:

1. S is a finite set of modules such that:
– Each module, s ∈ S, is a Timed Petri Net: s =

(Ps, Ts, Ws, M0s
).

– The sets of nodes corresponding to different mod-
ules are pair-wise disjoint: ∀s1, s2 ∈ S : [s1 6=
s2 ⇒ (Ps1

∪ Ts1
) ∩ (Ps2

∪ Ts2
) = ∅].

– P =
⋃

s∈S

Ps and T =
⋃

s∈S

Ts are the sets of all

places and all transitions.
2. TF ⊆ 2T \{∅} is a finite set of non-empty transition

fusion sets.

The above definition of a Timed Modular Petri Net
is identical to existing definitions [4,10] except for the
introduction of time. Each module is a Timed Petri Net,
and the modules interact via transition fusion — the
elements of a fusion set fire as a single transition.

4 Modular Timed State Space Exploration

In this section we present two algorithms for modular
state space exploration for a uniprocessor. (In section 5
we consider an algorithm suitable for a distributed envi-
ronment.) The first algorithm is based on a conservative
approach, which only explores transitions if their firing is
consistent with the RSS . The second algorithm is based
on an optimistic approach, which explores transitions if
their firing is consistent with the ESS , with reduction left
till later. These algorithms are consistent with the dis-
tinction between conservative and optimistic algorithms
for distributed discrete event simulation [6]. Before han-
dling the modular cases, we first present the algorithms
for a flat timed net.

In this paper, we focus on state spaces built with
a predetermined time limit, as computed by some tools
such as Design/CPN. To remove this limitation, it would
be necessary to construct classes of timed markings, as
in e.g. [2]. As we aim to construct a tool which might,
in a distributed version, have the underlying structure
of the distributed state space construction from [9], this
limitation is not yet an issue.

4.1 Algorithms for a flat net

An algorithm to generate an earliest time state space for
a timed net is given in Fig. 3. It maintains a set Waiting
of as-yet unexplored markings. At each iteration of the
repeat loop, the current elements of Waiting are re-
moved and examined for enabled transitions. As usual,
function Node.Add(M ′) adds a node labelled with M ′

to the graph and state M ′ to set Waiting, provided it
does not already exist. Similarly, Arc.Add(M, t, M ′)k

adds an arc to the graph. The algorithm terminates when
stability is reached, i.e. when Waiting is empty.

The algorithm in Figure 3 includes a time limit (called
system limit) beyond which we do not explore transi-
tions, and we always pick the earliest time at which a
transition is enabled. It is these two aspects which dif-
ferentiate this algorithm from the traditional algorithm
for reachability analysis of an untimed net.
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1: TS system limit ←??
2: set Waiting ← ∅
3: Node.Add(M0)
4: repeat

5: for all M ∈ Waiting do

6: Waiting ← Waiting \{M}
7: for all t ∈ T,∃k ≤system limit:

M [t〉kM ′ and 6 ∃k′ < k : M [t〉k′ do

8: Node.Add(M ′)
9: Arc.Add(M, t, M ′)k

10: end for

11: end for

12: until stable

Fig. 3. Algorithm for earliest time state space.

1: TS system limit ←??
2: TS system time ← 0
3: set Waiting ← ∅
4: Node.Add(M0)
5: while system time ≤ system limit do

6: repeat

7: for all M ∈ Waiting do

8: for all t ∈ T, M [t〉system timeM
′ do

9: Node.Add(M ′)
10: Arc.Add(M, t, M ′)system time

11: Waiting ← Waiting \{M}
12: end for

13: end for

14: until stable
15: system time← system time + 1
16: end while

Fig. 4. Algorithm for reduced earliest time state space.

More significant modifications are required to gener-
ate the reduced earliest time state space. If we restrict
our attention to integral time, then we can maintain
a variable (called system time) which is the time for
which we are prepared to consider transition enablings.
Essentially, the repeat loop of lines 4-12 of Fig. 3 can
be nested within a loop that increments system time at
each iteration, and then transitions are considered for
enabling at time system time. This guarantees that in
a given marking, we will consider the transitions that
can fire earliest. The problem now is that the markings
in the set Waiting cannot be discarded immediately be-
cause, while they may not currently enable a transition,
they may enable a transition at some future time.

Fig. 4 contains our modified algorithm for producing
a reduced earliest time state space. States are only re-
moved from set Waiting once we have found an enabled
transition. If a state does not enable any transition at
any time in the future, then it will remain in set Waiting
forever, which is clearly inefficient.

Module A Module B

A1

A2 A3

B1

B2 B3

B4 B5

t1 tf

1@5 1@3

t2 t3

tftf

1@2 1@2

1@2 1@4

Fig. 5. Example of two timed modules

4.2 Modular algorithms

In order to highlight the issues pertinent to the modular
analysis of timed systems, we consider the simple exam-
ple of Fig. 5. The transition input arcs indicate delays
on tokens. Transitions t1, t2 and t3 are local transitions,
while transition tf is fused, with the occurrence in mod-
ule A needing to synchronise with one of the occurrences
in module B. The corresponding local state spaces and
the synchronisation graph are shown in Fig. 6, where the
states indicate the marked places and the token times-
tamp(s).

In modular analysis, we explore the local state space
of each module. The synchronisation graph captures the
synchronisation points between the modules. The states
of the synchronisation graph are system states, each of
which is a tuple of module states. Thus, the state labelled
A1,0 B1,0 corresponds to the system state with module
A in state A1 at time 0, and with module B in state
B1 at time 0. The arcs of the synchronisation graph are
labelled with the fused transitions together with their
time of firing. Since the fused transition will normally
fire only after some internal activity of the modules, the
arcs are also labelled with the local states which enable
the fused transition. Thus, the arc labelled A1B2,tf,4 in-
dicates that transition tf can fire at time 4 when module
A is in state A1 and module B has reached state B2.
Thus, while module A can fire tf at time 3, it needs to
wait till time 4, when module B is also ready.

The fact that a system state consists of a tuple of
module states also means that the state of one module
may be combined with states of multiple other modules,
and decisions about reduced earliest time state spaces
cannot be made merely at the local level. In the exam-
ple, we cannot tell whether transition t1 is preempted
by transitions t2 and t3. Similarly, while we can deter-
mine if a local transition preempts a fused transition (in
the same module), the converse is not possible. Thus, in
module A, transitions t1 and tf are in conflict. In the
local state space, tf could preempt t1, but tf needs to
synchronise with tf in module B, which delays the fir-
ing time. With a short delay, tf may preempt t1; with a
longer delay tf may be preempted by t1.
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Module A state space

A1,0

A2,5 A3,3

Module B state space

B1,0

B2,2 B3,2

Synchronisation Graph

A1,0 B1,0

A3,4 B4,4 A3,6 B5,6

B4,4 B5,6

t1,5 tf,3

tf,4 tf,6

t2,2 t3,2 A1B2,tf,4 A1B3,tf,6

Fig. 6. Modular state space for two timed modules

A1,0 B1,0

A2,5 B2,2 A2,5 B3,2

t2,2 t3,2

A2,5 B1,0A1,0 B2,2 A1,0 B3,2

A3,4 B4,4

t1,5
tf,4

A3,5 B5,6

t1,5
tf,6

t1,5
t2,2 t3,2

Fig. 7. Unfolded state space for two timed modules

In other words, questions about which transition pre-
empts another can only be finalised in an unfolded state
space as shown in Fig. 7. The broken arcs indicate tran-
sitions that are preempted in the unfolded state space.
Thus, the local state space needs to be an earliest time
state space rather than a reduced earliest time state
space.

4.3 Conservative Algorithm

The algorithm of Fig. 4 is now adapted to cater for mod-
ular analysis. The state space we construct is the timed
extension of modular state spaces [4]. It consists of one
local state space per module, describing only the mod-
ule’s internal behaviour, and a synchronisation graph
capturing the interactions between modules.

Fig. 8 presents the algorithm for computing the syn-
chronisation graph, while Fig. 9 presents the algorithm
for computing the local state space of a module. As in
Fig. 4, both the local state space and the synchronisa-
tion graph are computed in lock step — all activity at
a time point is explored before time is advanced. This is
the conservative approach.

Thus, in Fig. 8, system time is incremented by one
each time round the outer loop (up to system limit)
and all possible activity is investigated at each time
point. Given that we are considering integral time, this
means that we will consider transition firings at the ear-
liest possible time. Note that the markings M are im-
mediately removed from Waiting even though they may
enable a fused transition some time in the future. This

1: TS system limit ←??
2: TS system time ← 0
3: set Waiting ← ∅
4: Node.Add(M0)
5: while system time ≤ system limit do

6: repeat

7: ∀i: trysynchi ←Explore(Si, Waiting, system time)
8: Waiting ← ∅
9: for all tf ∈ TF do

10: for all (M, M ′) s.t. (M, M ′

i , tf ) ∈ trysynchi∨
tf ∩ Ti = ∅ ∧M ′

i = Mi do

11: if M ′[tf〉system timeM
′′ then

12: Node.Add(M ′′)
13: Arc.Add(M, (M ′, tf), M ′′)system time

14: end if

15: end for

16: end for

17: until stable
18: system time ← system time + 1
19: end while

Fig. 8. Conservative algorithm for synchronisation graph.

is dealt with by having the local state space exploration
retain the local markings between calls.

The function Explore (in Fig. 9) returns a set of
triples — the first element is a synchronisation node,
the second is the local marking reachable from the first,
and the third is the fused transition which is locally en-
abled at this reachable marking. This approach is re-
quired because Explore only examines reachable mark-
ings in time slices up to the current system time. In
other words, Explore will examine the local markings
reachable from a synchronisation node over several calls
to the function, and it is necessary to relate the locally
reachable marking to the synchronisation node from which
it was derived.

Thus, each call to Explore returns such a set of
triples in variable trysynch

i
. From the results returned

for all the modules, we build global marking pairs (M, M ′),
where the first element of the pair is a node in the syn-
chronisation graph, and the second element corresponds
to a marking locally reachable from there. If the second
element enables a fused transition at the current time,
then we add the appropriate node and arc to the syn-
chronisation graph.

The logic underlying function Explore(Si, Current,

local limiti) is based on the one for a flat net, pre-
sented in Fig. 4. The variables, such as trysync

i
, are

subscripted to emphasise their local significance, the vari-
able local timei replaces system time, and the mark-
ing M is replaced by marking pairs (M, M ′

i
). Variable

Waiting future
i
holds the marking pairs that might en-

able a transition in the future, while Waiting current
i

holds markings to be examined for transition enabling at
the current time. Because these variables hold pairs of
markings, Node.Add (at the local level) needs to have
two arguments — it adds the second to the local state
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1: static TS local timei ← 0
2: static set Waiting futurei ← ∅
3: set Waiting currenti ← ∅
4: set trysynchi ← ∅
5: ∀M ∈ Current: Node.Add(M, Mi)
6: Waiting currenti ← Waiting futurei

7: if local timei < local limiti then

8: local timei ← local timei + 1
9: end if

10: repeat

11: for all (M, M ′

i) ∈ Waiting currenti do

12: Waiting currenti ← Waiting currenti \ {(M, M ′

i)}
13: for all ti ∈ Ti \ TF , M ′

i [ti〉local timei
M ′′

i do

14: Node.Add(M, M ′′

i )
15: Arc.Add(M ′

i , ti, M
′′

i )local timei

16: Waiting futurei ← Waiting futurei \ {(M, M ′

i)}
17: end for

18: for all tf ∈ TF ∩ Ti, M ′

i [tf〉local timei
do

19: trysynchi ← trysynchi ∪ {(M, M ′

i , tf)}
20: end for

21: end for

22: until stable
23: return trysynchi

Fig. 9. Conservative algorithm for local state space —
Explore(Si, Current, local limiti).

space, and the pair of markings to both Waiting future
i

and Waiting current
i
. Finally, lines 18-20 consider the

enabling of the local component of a fused transition.
Where such an enabling is found, the relevant triple is
added to variable trysynch

i
, which is then returned as

the function result. These possible synchronisations will
be repeatedly returned until they are preempted by local
transitions.

By exploring local activity at each consecutive time
point, Explore caters for transitions preempting oth-
ers at the local level. As noted in section 4.2, it cannot
determine whether a local transition in one module pre-
empts a local transition in another, nor whether a fused
transition preempts a local transition. These issues can
only be resolved in an unfolded state space.

4.4 Optimistic Algorithm

In view of the limitations of the conservative algorithm
(noted in section 4.3), we now consider an alternative
algorithm, inspired by the optimistic approach to dis-
tributed discrete event simulation [6]. Here, we acknowl-
edge that we can only guarantee producing a reduced
earliest time state space at the local level or at the global
level but not local relative to global.

Consequently, each call to function Explore exam-
ines the local state space up to system limit and not
just system time. Since we explore all relevant activity
from a synchronisation node, and not just some small
time slice, we can simply return pairs giving the locally
reachable marking and the fused transition which it en-

1: TS system limit ←??
2: set Waiting ← ∅
3: Node.Add(M0)
4: repeat

5: for all M ∈ Waiting do

6: Waiting ← Waiting \{M}
7: ∀i : trysynchi ← Explore(Si, Mi,system limit)
8: for all tf ∈ TF do

9: for all M ′ s.t. (M ′

i , tf) ∈ trysynchi∨
tf ∩ Ti = ∅ ∧M ′

i = Mi do

10: if M ′[tf〉kM ′′ and 6 ∃k′ < k : M ′[t〉k′ then

11: Node.Add(M ′′)
12: Arc.Add(M, (M ′, tf), M ′′)k

13: end if

14: end for

15: end for

16: end for

17: until stable

Fig. 10. Optimistic algorithm for synchronisation graph.

1: set Waitingi ← ∅
2: set trysynchi ← ∅
3: Node.Add(Mi)
4: repeat

5: for all M ′

i ∈ Waitingi do

6: Waitingi ← Waitingi \ {M
′

i}
7: for all ti ∈ Ti \ TF , M ′

i [ti〉kM ′′

i , 6 ∃k′ < k : M ′

i [ti〉k′

do

8: Node.Add(M ′′

i )
9: Arc.Add(M ′

i , ti, M
′′

i )k

10: end for

11: for all tf ∈ TF ∩ Ti, M ′

i [tf〉kM ′′

i , 6 ∃k′ < k :
M ′

i [tf〉k′ do

12: trysynchi ← trysynchi ∪ {(M
′

i , tf)}
13: end for

14: end for

15: until stable
16: return trysynchi

Fig. 11. Optimistic algorithm for local state space —
Explore(Si, Mi, system limit).

ables. The modified algorithm is presented in Figs. 10
and 11. Note that if Explore is called multiple times
with the same marking, then the locally reachable mark-
ings need to be recalculated or else some caching regime
is required [12].

The optimistic approach simplifies both parts of the
algorithm, but the cost is that it may produce larger
local state spaces which will require further reduction in
an unfolding of the modular state space.

5 Distributed Exploration

5.1 Basic Algorithm

The distributed algorithm in this section follows the con-
servative paradigm of section 4.3 and relies on an archi-
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1: current time ← 0
2: repeat

3: repeat

4: message ← receive()
5: if message == STATE M then

6: Node.Add(M,Mi)
7: else if message == TIMEINC then

8: current time ← current time +1
9: end if

10: until message ! = STATE M
11: if message ! = STOP then

12: sync ← local generation(current time)
13: if sync == now then

14: send(WAITING i)
15: else if sync == future then

16: send(STOPPED)
17: else

18: send(STUCK)
19: end if

20: end if

21: until message == STOP

Fig. 12. Distributed algorithm for local state space of module i.

1: Waiting current ← Waiting future
2: sync ← none
3: for all (M, M ′

i) ∈ Waiting current do

4: for all ti ∈ Ti \ TF , M ′

i [t〉current timeM
′′

i do

5: Waiting future ← Waiting future \{(M, M ′

i)}
6: Node.Add(M,M ′′

i )
7: Arc.Add(M ′

i , ti, M
′′

i )current time

8: end for

9: if ∃t, enabled untimed(M ′

i , t) then

10: sync ← future
11: else

12: Waiting future ← Waiting future \{(M, M ′

i)}
13: end if

14: for all tf ∈ Ti ∩ TF , M ′

i [tf〉current time do

15: sync ← now
16: send(SYNC M M′

i tf)
17: end for

18: Waiting current ← Waiting current \{(M, M ′

i)}
19: end for

Fig. 13. Function local generation(current time)

tecture similar to that of [9]: several processes compute
local parts of the state space while a single process han-
dles the synchronisations.

Fig. 12 presents the algorithm to compute the local
state space of module i. It focusses on the messages ex-
changed with the synchronisation process. The local gen-
eration, per se, is handled by function local generation,
in Fig. 13.

The synchronisation process is also presented in two
parts: the main one (Fig. 14) handles the communica-
tions with other processes and ensures the termination
of all processes (if necessary), while function synchro-

1: ∀i, trysync[i]← ∅
2: ∀i, status[i]← RUNNING
3: current time ← 0
4: system limit ←??
5: Node.Add(M0)
6: ∀i, send(i, STATE M0)
7: ∀i, send(i, SENT)
8: while ∃i, status[i] != STUCK ∧ current time ≤ sys-

tem limit do

9: for all i do

10: while status[i] == RUNNING do

11: message ← receive(i)
12: if message == SYNC M M′

i tf then

13: trysync[i]← trysync[i] ∪ {(M, M ′

i , tf)}
14: else

15: status[i]←message
16: end if

17: end while

18: end for

19: synchronise(∀i trysync[i],current time)
20: end while

21: ∀i, send(i, STOP)

Fig. 14. Distributed algorithm for the synchronisation process.

1: new sync ← false
2: for all tf ∈ TF do

3: if ∀i synchronising on tf ,∃(M, M ′

i , tf ) ∈ trysync[i]
then

4: {a synchronisation is possible}
5: for all M ′ such that ∀i, (M, M ′

i , tf ) ∈ trysync[i] :
M ′[tf 〉current timeM

′′ do

6: Node.Add(M ′′)
7: Arc.Add(M, (M ′, tf), M ′′)current time

8: ∀i synchronising on tf , send(i, STATE M ′′

i )
9: end for

10: new sync ← true
11: ∀i synchronising on tf , status[i]← RUNNING
12: end if

13: end for

14: if new sync then

15: for all i such that status[i] == RUNNING do

16: trysync[i]← 0
17: send(i, SENT)
18: end for

19: else if current time < system limit then

20: current time ← current time +1
21: ∀ i, send(i, TIMEINC)
22: end if

Fig. 15. Function synchronise(∀i trysync[i],current time)

nise, in Fig. 15, computes the synchronisation transi-
tions enabled at the current time.

The different processes communicate by exchanging
messages, as in table 1.

Let us now explain the different algorithms. There is
one local process per module. Initially, the current time
(variable current time) is set to 0 — it will be incre-
mented when the synchronisation process sends the or-
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Message Local Sync. Meaning

SYNC −−−→ Send a marking
WAITING −−−→ Has sent markings, waits for reply

STATE ←−−− Synchronisation possible, send a marking
SENT ←−−− All new states have been sent

TIMEINC ←−−− No new synchronisation, hence increment time
STOPPED −−−→ Nothing enabled at current time
STUCK −−−→ No future enabling
STOP ←−−− Computation finished

Table 1. Messages exchanged

der to do so. The local process executes a loop until the
synchronisation process instructs it to stop. This loop re-
ceives markings and calls function local generation
to explore transitions for current time. Two sets are used:
Waiting current contains the marking pairs that may en-
able a transition at the current time, and Waiting future

contains the marking pairs that enable a transition later
on. Note that the function creating a node, Node.Add
adds elements to both of these sets.

After the local generation at current time is com-
pleted, any states enabling a synchronised transition at
the current time are sent to the synchronisation process,
followed by a WAITING message. The local process is
then ready to receive new states obtained by synchro-
nisation, which it will explore, or a TIMEINC message,
indicating that no synchronisation was possible at the
current time, and hence the time can be incremented.
Otherwise, if the local process can neither fire a syn-
chronised transition nor a local one at current time, then
either there are not enough tokens to enable a transition
even in the future, in which case it tells the synchroni-
sation process that it is STUCK, or else it says that it
is STOPPED and waits until it is told to increment its
time.

The synchronisation process also starts at current time

0 and assumes that the status of all local processes is
RUNNING. It performs a loop until all processes are
STUCK or some maximum time system limit has been
reached. When this is the case, it tells all processes to
STOP. In the loop, the synchronisation process receives
and handles all messages sent by RUNNING local pro-
cesses. These messages can either be states at which a
synchronisation might be possible, or the new status of
a local process. Function synchronise is the core of the
process. For each synchronised transition tf , it checks if
it can occur, it computes and sends the resulting states
to the local processes concerned. The status of these
processes is updated to RUNNING (which is really the
case when all the necessary operations have taken place).
When all synchronisations have been done, a SENT mes-
sage is sent to all processes that were involved, so that
they can pursue their local construction at the same cur-

rent time. Their markings are removed from the appro-
priate set of trysync states. If no synchronisation has

occurred, the set of trysync states is reinitialised, the
current time is incremented, and all local processes are
told to increment their time.

5.2 Correctness

To prove the correctness of the distributed algorithm,
we will explain which markings and firings are handled
by each part of each process.

The local processes construct only the local parts of
the state space. Function local generation uses a set
Waiting current of markings which possibly enable a
transition at the current time. All markings M of this
set are dealt with one by one, and then deleted from
Waiting current. If M does not enable any transition,
independently of the time, it is also removed from the set
Waiting future of markings to be examined later. If M

enables a transition at current time, its successors are
built and added to both sets of markings. As the transi-
tions enabled from M are dealt with at current time,
M can be removed from Waiting future because future
transitions have been preempted.

Hence, if no synchronised transition is enabled, the
local state space is generated up to current time. The
local process then waits for instructions from the syn-
chronisation process, which are either to increment time,
if a transition may still be enabled in the future, or stop
otherwise.

Whenever synchronised transitions are enabled at the
current time, the states enabling them are sent to the
synchronisation process. Synchronisations may lead to
new states which in turn may enable local transitions
at current time. Therefore, the local process waits for
all states sent by the synchronisation process and then
computes again the local parts at current time.

The synchronisation process has the same current time

as the other processes. When it receives states, it tries
to synchronise shared transitions, and eventually sends
back the newly created states. If no synchronisation can
occur, a message TIMEINC is sent to all local processes
and current time is incremented. The synchronisation
process stops either when all processes are stuck or a
maximum time is reached.
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We conclude that transitions are handled in an ear-
liest firing time fashion.

One of the key problems is the termination of the dis-
tributed algorithm. When a local process has finished its
computation, it sends a message to the synchronisation
process. The local process can either have sent mark-
ings on which a synchronisation is possible (it is then
WAITING for an answer), or is STOPPED (nothing is
enabled at the current time) or even STUCK (nothing
will ever be enabled). When in state WAITING, if a
synchronisation is possible, new markings will be sent to
the local process, otherwise, a TIMEINC message will
eventually be sent. The same message is sent when the
process is STOPPED, so has markings to handle at a fu-
ture time. Finally, when all local processes are STUCK
or the time limit has been reached, all local processes re-
ceive a STOP message and end their computation. The
synchronisation process stops as well.

6 Implementation issues

This section considers the simulation of time in the con-
text of modular state space exploration in the Maria
tool [12]. Maria supports modular state space construc-
tion but not time. In subsection 6.1 we consider the ca-
pabilities of Maria that are used to simulate time. The
simulation is achieved by augmenting a timed system
net with additional net components, which constitute a
generic timing infrastructure. This infrastructure (which
is presented in subsection 6.2) would not be required for
a tool that supported timed analysis. The costs of this
infrastructure are considered in subsection 7.5.

6.1 Maria capabilities used to simulate time

As in section 3, tokens in the system net are assumed
to have a time value which indicates when the token is
accessible. Timing constraints on the firing of transitions
will compare these time values with the current (local)
time, which is stored as a token in a place LocalTimer.

In the absence of direct support for time in Maria [12],
timing capabilities can be simulated using prioritised
transitions. A high priority is allocated to any activity
of the timed system net (whether local or synchronised),
and a low priority is allocated to the infrastructure tran-
sitions. Thus, all possible activity of the system net is
explored before time is advanced.

In actual fact, the standard distribution of Maria has
a somewhat irregular implementation of prioritised tran-
sitions:

There is a simple priority method in the search
algorithm of Maria that works as follows. When
computing the successors of a marking, Maria in-
vestigates the transitions in the order they were

LocalTime

GlobalTime

LocalTimer

GlobalTimer LocalLimit

EarlyLocal

LocalEvent

Discard

Advance

EarlierLocal

lt

lt lt

lt

lt+

llgt

el

el

el le

le

le
el

le

le

Fig. 16. Generic infrastructure for local time management

defined in the model, from top to bottom. When-
ever a transition having a nonzero priority class
is found to be enabled, no further transitions of
other priority classes will be analyzed in the mark-
ing. [13]

In other words, the numeric priorities in Maria do
not imply an ordering of transitions, but simply serve to
divide the transitions into a number of transition classes.
The order of evaluation of transitions depends on the
transition class, and also the order in which transitions
appear in the net description. This approach is compli-
cated by the modular structure of the net, and becomes
unpredictable when Maria analyses a flattened version of
a modular net. Therefore, Maria was modified so that
transitions are sorted in priority order and considered
for enabling in this order. Thus the simulation of tim-
ing capabilities using prioritised transitions (as described
above), can be directly implemented.

Maria also provides support for code inclusion (us-
ing #include directives), and for conditional compilation
(using #ifdef, #ifndef, #else, #endif directives). The
code inclusion is used to incorporate the generic infras-
tructure wherever required. The conditional compilation
is used to choose between the different approaches to
time, whether incremental or using a calendar of pend-
ing events.

Maria also includes the possibility of hiding transi-
tions. This can be used to produce results where the
time management capabilities are hidden, thus reflect-
ing the state space results which would be achieved if
these capabilities were implemented rather than just be-
ing simulated.

6.2 Infrastructure to support time

The main part of the generic infrastructure to simu-
late time at the module level is shown in Fig 16. There
are three primary places which hold timer information
— GlobalTimer holds a single token giving the current
global time; LocalTimer holds a single token giving the
current local time; and LocalLimit holds a single token
with the limit to which time can be advanced locally.

As noted above, transitions of the system net are
allocated a high priority (currently 9). Local transitions
of the system net are fused with transition LocalTime
— this provides access to the current local time, and
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has priority 9. Synchronised transitions of the system
net are fused with transition GlobalTime — it provides
access both to the current local time and the current
global time, and also has priority 9. (Note that transition
GlobalTime is only enabled when the two time values
coincide, so that different modules cannot synchronise
unless their local times agree with the global time.)

Provided that the local limit is not exceeded, time
can progress locally by firing the transition Advance, as
indicated by the arc inscription lt+. This transition has
priority 5, which is lower than other activity of the sys-
tem net but higher than the priorities used for global
time management. This allows for an optimistic approach
to time, where local time can advance ahead of global
time. Computation of the next local time (if required)
will be at priorities between 5 and 9, while the global
time management will be at priority less than 5.

The shaded portion of the generic infrastructure (in
Fig 16) is optional and indicates net components used
to maintain a calendar of pending events. The place Lo-
calEvent holds the time values for known future events.
When a transition fires and produces tokens which will
become accessible to local transitions at some time in
the future, that time value is added to place LocalEvent.
The place EarlyLocal holds a single token giving the ear-
liest pending event time. If this time value is less than
that of the token in place LocalTimer, then transition
Discard is enabled, and the token will be replaced by
another from place LocalEvent. If there is a token in
place LocalEvent which has a value less than the token
in place EarlyLocal, then transition EarlierLocal can fire
and swap the two tokens. Transitions Discard and Ear-
lierLocal are allocated priorities 7 and 6 respectively, so
that the computation of the next local time occurs af-
ter any enabled activity of the system net, but before
transition Advance.

Each module can manage a similar calendar of pend-
ing events which may enable synchronised transitions.
This involves places EarlyGlobal and GlobalEvent, and
transitions DiscardGlobal and EarlierGlobal. Instead of
transition Advance there is a transition SynchClock where
each module makes its own earliest global event time ac-
cessible, and the clock logic chooses the minimum and
distributes this to all modules. Transitions DiscardGlobal
and EarlierGlobal are allocated priorities 4 and 3 respec-
tively.

The above infrastructure allows for a number of tim-
ing combinations. For a conservative approach to dis-
tributed time, the local limit can be kept the same as
the local time. This ensures that transition Advance is
never enabled and the only way to advance the local time
is by resynchronising with the global clock (which also
serves to reset the local limit). By contrast, an optimistic
approach to distributed time can be achieved by setting
the local limit to the maximum simulation time. Then,
a module’s local time can advance up to the local limit,
which goes beyond the current global time. The chosen

priorities ensure that the local activity is explored be-
fore global time is advanced. Note, however, that only
the firing of local transitions is explored (ahead of the
global time).

Without calendar(s) of pending events, time will be
integral and will always advance by steps of 1. With the
inclusion of calendars, time can advance to that of the
next pending event, in which case dense time can be
supported.

Finally, it should be noted that while we can simu-
late an optimistic approach to distributed time, the pos-
sible benefits cannot be realised until the technique is
implemented in the tool. This is because the presence
of timing values in places GlobalTimer, EarlyGlobal and
GlobalEvent, will discriminate states according to the
global time at which they were explored, and not just
the local time.

7 Experimental results

In this section, we apply two variants of the conservative
uniprocessor algorithm to the case study of section 2. In
subsection 7.1 we make some preliminary observations
about the interplay of timing with modular analysis. In
subsections 7.2 and 7.3 we present results for long and
short retransmission timeout periods, respectively, while
in subsection 7.4, we present results for a different mod-
ularisation of the system. Finally, in subsection 7.5, we
present results illustrating the costs of the generic infras-
tructure.

7.1 Timing Implications for Modular Analysis

It has already been observed [10] that the benefits of
modular state space exploration are most apparent for
systems exhibiting strong cohesion and weak coupling.
For a weakly coupled system, the modular approach
avoids exploring the many possible interleavings of the
internal activity of the component modules.

The introduction of time into a system typically changes
its state space from a broad structure (where many events
can occur at any stage) to a narrow structure (where the
number of events that can occur at any stage is signifi-
cantly constrained by the progress in system time).

The interplay between these two aspects can be illus-
trated in terms of the case study from section 2. Firstly,
we note that the case study is relatively simple, though
we have added some complexity (as compared to the
original in [8]) by extending it from a stop-and-wait pro-
tocol to a sliding window protocol.

Now, without the inclusion of time, the sending of
messages, their transmission, reception and acknowledge-
ment could all happen in an interleaved fashion. For ex-
ample, the reception of one message in the receiver could
be interleaved with the sending (or even retransmission)
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of other messages by the sender. Modular state space
exploration would avoid enumerating all these possible
interleavings, thus providing significant efficiency gains.

On the other hand, if time is included as in figures 1
and 2, then the situation is very different. The send-
ing of messages by the sender is separated by at least
Tmes (here 8) time units. The retransmission of a mes-
sage can only occur after Tmes+Twait (or 88) time units.
The packets have a median propagation time of Tmul*4
(or 32) time units. Then, reception of the message takes
Tmes (or 8) time units to process. This timing can re-
move most of the interleaving of module activity — the
sender sends the message at absolute time 8, the mes-
sage channel forwards the packet at absolute time 40, the
receiver processes the packet and sends an acknowledge-
ment at time 48, the acknowledgement channel forwards
the acknowledgement at absolute time 80, the acknowl-
edgement is processed at time 84, which then preempts
retransmission of the message. Variations in propagation
time will vary the absolute time values but not the strict
ordering of events.

Thus, if one is faced with the state space exploration
of a timed system, the benefits of a modular approach
are only going to be realised if the modules exhibit ac-
tivity which overlaps at the same point of time. These
considerations are to be observed in the results which
are presented below.

In general, we benchmark the modular results pro-
duced using Maria against those obtained for a flat sys-
tem (i.e. without modules) using Design/CPN [5]. Also,
the results are generally computed using a calendar of
pending events rather than incrementing time by one,
so as to reduce the infrastructure costs. Also, the costs
of the generic infrastructure are hidden. A comparison
between incremental time and the use of a calendar is
presented in subsection 7.5, together with an examina-
tion of the infrastructure costs.

Since the main goal of the modular state space tech-
nique is to reduce the size of the state space, we have
chosen to characterise the experimental results by the
number of nodes.

7.2 Long retransmission timeout delays

We first present results for the sliding window proto-
col with a long retransmission timeout delay — here
the constant Twait is set to 80. As discussed in subsec-
tion 7.1 this means that there will be minimal interleav-
ing of activities between the various modules. However,
the amount of activity in each module can be controlled
by the variations in propagation times and window sizes.

Given in figures 17-22 are a range of results as the
above parameters are varied and as the total simulation
time varies from 60 to 200 time units.

The figures show that modular analysis produces a
synchronisation graph which is 25-50% the size of the
full state space.
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Fig. 17. Long timeout, window 1, Netdelay={4..4}
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Fig. 18. Long timeout, window 1, Netdelay={3..5}
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Fig. 19. Long timeout, window 1, Netdelay={2..6}
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Fig. 21. Long timeout, window 2, Netdelay={3..5}
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Fig. 22. Long timeout, window 2, Netdelay={2..6}
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Fig. 23. Short timeout, window 1, Netdelay={4..4}

7.3 Short retransmission timeout delays

With a long retransmission timeout delay, the behaviour
in the various modules is mostly time-ordered rather
than being interleaved. As indicated in 7.1, the bene-
fits of modular state space exploration in this case are
limited. However, if the retransmission timeout delay is
significantly reduced, then the level of concurrent activ-
ity is increased. We now set the constant Twait to 16,
giving a delay of 24 before a message is retransmitted.

Given in figures 23-27 are a range of results as the
window size and propagation delay are varied and as the
total simulation time varies from 60 to 200 time units.
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Fig. 24. Short timeout, window 1, Netdelay={3..5}

0

20000

40000

60000

80000

100000

120000

140000

160000

60 80 100 120 140 160 180 200

Maxtime

N
o
d
e
s

DCPN(2-6)

Synch(2-6)CY

Fig. 25. Short timeout, window 1, Netdelay={2..6}
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Fig. 26. Short timeout, window 2, Netdelay={4..4}
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Fig. 27. Short timeout, window 2, Netdelay={3..5}
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Fig. 28. Fewer modules, window 1, Netdelay={4..4}
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Fig. 29. Fewer modules, window 1, Netdelay={3..5}

These figures display some improvement in the bene-
fits of modular state space exploration, but they are not
extensive. This is because most internal actions result in
a corresponding synchronisation action, and hence the
level of internal activity is limited. For example, the dif-
ferent propagation delays used in firing transition Trans-
mit Packet will result in different occurrences of transi-
tion Receive Packet (in fig. 1).

7.4 Different modularisation

Another possiblity for increasing the interleaving of ac-
tivity between modules is to modify the partitioning of
the system into modules. Here, we investigate the merg-
ing of the modules for the sender and the message chan-
nel, and also for the receiver and the acknowledgement
channel. Intuitively, the effect of this is to combine the
variability of the sender and the associated propagation
delays (and possible loss) into the one module, thereby
hiding some of this from the other modules. We have
used the long retransmission timeout delay of section 7.2.
The corresponding results are given in figures 28-33.

Here, the benefits of modular state space exploration
are much more dramatic. The use of modular techniques
can now make the difference between being able to anal-
yse a particular configuration or not being able to do
so.
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Fig. 30. Fewer modules, window 1, Netdelay={2..6}
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Fig. 31. Fewer modules, window 2, Netdelay={4..4}
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Fig. 32. Fewer modules, window 2, Netdelay={3..5}
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Fig. 33. Fewer modules, window 2, Netdelay={2..6}
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Fig. 34. Infrastructure costs, window 1, Netdelay={4..4}
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Fig. 35. Infrastructure costs, window 1, Netdelay={3..5}

7.5 Infrastructure costs

Finally, we present some results which indicate the costs
of the generic infrastructure. We use a long timeout delay
and, for each combination of window size and propaga-
tion delay, we compare the total cost for using incremen-
tal time and for using a calendar of pending events, both
with and without the infrastructure costs being hidden.

As usual, figures 34-39 present a range of results as
the window sizes and propagation delays are varied and
as the total simulation time varies from 60 to 200 time
units. In the graph legends, the suffixes I and C dis-
tinguish between Incremental time and the use of a
Calendar. The suffix Y, if present, indicates that op-
tion Y was used in the run of Maria, which serves to
hide the states and transitions which are solely related
to the infrastructure.

It can be observed that the infrastructure costs for
incremental time are significantly greater than those for
the use of a calendar. By contrast, the infrastructure
costs for a calendar of pending events are relatively mi-
nor. It is also interesting to note that, with the infras-
tructure costs hidden, the results for incremental time
and a calendar of pending events are largely indistin-
guishable. This is an interesting result, given that the
calendar of pending events adds a significant amount of
data to each state.
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Fig. 36. Infrastructure costs, window 1, Netdelay={2..6}
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Fig. 37. Infrastructure costs, window 2, Netdelay={4..4}
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Fig. 38. Infrastructure costs, window 2, Netdelay={3..5}
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Fig. 39. Infrastructure costs, window 2, Netdelay={2..6}
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8 Related work

There has been extensive work on the model-checking of
timed systems, both Time Petri nets (TPNs) and Timed
Automata (TAs). For a recent survey see [14]. For TPNs,
transitions are associated with a time interval, during
which the transition may fire (relative to the time when
the transition became enabled). The state space is struc-
tured by pairs of markings and clocks — there is one
clock per transition indicating the time since the tran-
sition became enabled. The state space is partitioned
into equivalence classes or convex regions, the equiva-
lence capturing the similar time response of the system.
Clocks are reset to zero when the transition becomes en-
abled, but otherwise advance at the same rate. Region
boundaries are determined by the firing intervals (asso-
ciated with the transitions) and the time constraints in
the temporal property being checked.

There has also been work on model-checking of timed
systems with partial order reduction [16]. Here, the tran-
sitions explored at each point in time are not just the
fireable transitions, but a subset of these — those which
are visible (with respect to the formula being model-
checked) and which affect the enabling of each other.
The reduced state graph is time stuttering equivalent to
the original state graph.

Another, different, approach is that of Berthelot and
Boucheneb [2,3]. Here, state classes are identified by the
timing properties since the last transition fired, together
with a history of the relevant intervals associated with
tokens which still belong to the state.

The work presented in this paper has focussed on
modular state space exploration rather than the more
general issue of model-checking of timed systems. Unlike
the model-checking approaches considered above, we do
not restrict attention to 1-safe nets. This means that it
is not possible to attach a single clock to each transi-
tion. Rather, timestamps are attached to tokens, and if
multiple tokens are resident in a place, a choice of the to-
ken(s) to be consumed may need to be made. Individual
delays (rather than delay intervals) are attached to in-
put and output arcs so as to limit the accessibility to the
tokens by the passage of time. Transitions then fire at
the earliest possible time (unless precluded by conflict-
ing transitions). In the above-mentioned model-checking
approaches, there are a number of clocks, one per tran-
sition. However, they advance at the same rate (unless
they are reset when a transition becomes enabled). The
modular approach also has a number of clocks, but these
are associated with modules, and these clocks can ad-
vance at different rates (under the optimisitic view of
time).

Both partial order reduction and modular state space
exploration take advantage of some notion of indepen-
dence between transitions. Partial order reduction re-
stricts attention at each state to a mutually dependent
subset of the enabled transitions, the dependency being

determined by access to the global state. Modular state
space exploration builds on the fact that the local transi-
tions of one module are largely independent of the local
transitions of another module. The precise relationship
between these two forms of dependence is an open ques-
tion, though there has been some work on using partial
order reduction to make modular state space exploration
more efficient [11].

In view of the above, we consider the work on mod-
ular state space exploration as largely orthogonal to the
above-mentioned work on model-checking of timed sys-
tems and partial order reduction. Future work may con-
sider extending the modular techniques to investigate
their applicability to state classes, and even to temporal
model checking.

9 Conclusions and Further Work

This paper has extended the definition of state spaces to
cater for timed systems. It has identified an earliest time
state space, where all transitions enabled in a marking
occur at the earliest time possible. It has also identified
a reduced earliest time state space, where transitions
enabled at a state are preempted by others which can
occur earlier. The latter is the more traditional approach
to timed state spaces. However, for modular systems,
the independent analysis of the modules means that a
reduced earliest time state space cannot be determined
except in the unfolded state space. This being the case,
it is appropriate to generate an earliest time state space
as part of modular exploration.

The above raises the challenging question whether,
as for earlier results [10], timing properties can be de-
termined from the timed modular state space without
unfolding. This is an important issue for future work.

This paper has presented two algorithms for a unipro-
cessor and one for a distributed environment which have
generated the timed modular state space. The unipro-
cessor algorithms were inspired by the conservative and
optimistic approaches to distributed discrete event sim-
ulation. The optimistic approach is based on generating
the earliest time state space.

The formal definitions allow for dense time but the
algorithms are defined for integral time. The algorithms
can be modified to handle dense time by maintaining
a schedule of pending events, e.g. in a priority queue.
While this does not constitute a significant change, it
would unnecessarily clutter the presentation of the algo-
rithms. A more challenging issue for further work con-
sists in adapting the algorithms to the generation of state
class graphs, as in [2]. This would alleviate the maximum
system time constraint.

Experimental results have been presented for the con-
servative uniprocessor algorithm. These demonstrate the
value of modular analysis for timed systems, provided
that the activity of different modules do overlap in time.
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We have also compared results for the use of incremen-
tal time as opposed to the use of a calendar of pending
events. In the former case, the overheads introduced can
be quite significant, while in the latter case they are rel-
atively minimal. Further, the addition of the calendar
of pending events, which extends the data stored with
each state, seems to have little impact on the size of the
synchronisation graph.

We have also derived preliminary results for the op-
timistic uniprocessor algorithm, and they indicate that
this approach does reduce the amount of synchronisa-
tion between modules without necessarily resulting in
a lot of superfluous exploration of the local state space.
However, the optimistic algorithm does need to be paired
with the use of a schedule of pending events, or else each
module from each synchronisation node will increment
time up to the time limit looking for possible enabled
transitions. It also needs to be implemented rather than
just simulated or else the local states are differentiated
not just by the local time, but also by the global time of
the preceding synchronisation node. It will be important
to perform further experiments to see whether the pre-
liminary results for the optimistic algorithm carry over
to more realistic case studies. It will also be important to
experiment with a number of generalisations and optimi-
sations that we have identified, in order to see whether
they are of value in fine-tuning the algorithms.
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13. M. Mäkelä. Maria - Modular Reachability Analyzer for
Algebraic System Nets (Version 1.3.4). Technical report,
Helsinki University of Technology, Laboratory for Theo-
retical Computer Science, June 2003 2003.

14. W. Penczek and A. Polrola. Specification and Model
Checking of Temporal Properties in Time Petri Nets and
Timed Automata. In J. Cortadella and W. Reisig, ed-
itors, International Conference on the Application and
Theory of Petri Nets, volume 3099 of Lecture Notes in
Computer Science, pages 37–76, Florida, 2004. Springer.

15. L. Petrucci. Cover picture story: Experiments with mod-
ular state spaces. Petri Net Newsletter, 68:Cover page
and 5–10, April 2005.

16. I. Virbitskaite and E. Pokozy. A Partial Order Method
for the Verification of Time Petri Nets. In G. Ciobanu
and G. Paun, editors, Fundamentals of Computation
Theory, volume 1684 of Lecture Notes in Computer Sci-
ence, pages 547–558. Springer, 1999.


