A Modelling Approach with Coloured Petri Nets

Christine Choppy!, Laure Petrucci', and Gianna Reggio?

L LIPN, Institut Galilée - Université Paris XIII, France
2 DISI, Universita di Genova, Italy

Abstract. When designing a complex system with critical requirements
(e.g. for safety issues), formal models are often used for analysis prior
to costly hardware/software implementation. However, writing the for-
mal specification starting from the textual description is not easy. An
approach to this problem has been developed in the context of alge-
braic specifications [CR06], and was later adapted to Petri nets [CP04]
CPROT). Here, we show how such a method, with precise and detailed
guidelines, can be applied for writing modular coloured Petri nets. This
is illustrated on a model railway case study, where modules are a key
aspect.

Keywords: specification method, modelling method, coloured Petri nets,
modular design.

1 Introduction

While formal specifications are well advocated when a good basis for further
development is required, they remain difficult to write in general. Among the
problems are the complexity of the system to be developed, and the use of a
formal language. Hence, some help is required to start designing the specification,
and then some guidelines are needed to remind essential features to be described.

Petri nets have been successfully used for concurrent systems specification.
Among their attractive features, is the combination of a graphical language and
an effective formal model that may be used for formal verification. Expressiveness
of Petri nets is dramatically increased by the use of high-level Petri nets [JKWO7],
and also by the addition of modularity allowing for quite large case studies.

While the use of Petri nets becomes much easier with the availability of high
quality environments and tools, to our knowledge, little work had been devoted
to a specification method for writing Petri nets.

Inspired by the work on algebraic specifications in [CRO6], we proposed a
method, providing detailed and precise guidelines. An initial approach was pre-
sented in [CP04], and further developed in [CPROT] where the different steps for
building a coloured Petri net from a textual description of a system are shown.

In this paper, we push our work a step further and start introducing the use
of modularity. Section [2 gives an overview of our design method. The role of the
different steps is explained. In the following sections, these steps are detailed
individually before being applied to a model railway case study. First, section [3]

F. Kordon and T. Vardanega (Eds.): Ada-Europe 2008, LNCS 5026, pp. 73-86] 2008.
© Springer-Verlag Berlin Heidelberg 2008

74 C. Choppy, L. Petrucci, and G. Reggio

describes the running example and its expected behaviour in an informal way,
as could be given to a designer. The constituent features and modular struc-
ture of our system are derived from the description. Section M expresses the
expected properties of the system in terms of the previously identified elements.
Then, sections Bl and [l show how this is all transformed into a modular coloured
Petri net and the properties validated. In these different steps, the basic opera-
tions from [CPRO7] are summarised while focusing on the new modular aspects.
In particular, we shall see that sometimes it is sufficient to consider modules
independently of one another, whereas for other issues it is necessary to con-
sider the system as a whole. Finally, section [7] discusses re-engineering (because
some properties were not valid). This re-engineering phase modifies part of the
train routing policy in some modules identified during the properties verifica-
tion phase. The conclusion (section 8) summarises the design method and draws
lessons from this experience w.r.t. modularity, refinement and re-engineering.

2 Overview of the Design Method

The goal of the proposed method is to obtain a modular coloured Petri net
modelling a given system. The general approach is described in Fig. 21 While a
modular structure is being built, the method is based on two key ingredients, the
constituent features, that are events and state observers. Fvents are, as usual,
e.g. an action of some component, or a change in some part of the system.
A state observer instead defines some-
thing that may be observed on the .
states of the system, defined by the
values of some type. These constituent
features are grouped into the rele- [Find Modular Structure]
vant modules, that represent the dif-
ferent components (or subsystems) of
the system. Both events and state ob- [Find Events and State]
. . Observers
servers can appear in different modules
when they are part of their interface
B Find Properties
(e.g. synchronised events and shared _
[need to modify [need to modify

resources) . modular structure | state observers/events |

Starting from an informal (textual)
description, the first step consists in
identifying the state observers and the
events characterising the system, as
well as the components in which they
take part. This leads to a set of mod- L ahoctire
ules, each with two lists of events and g

Build the Coloured
Petri net

Check the
properties
[need to modify

state observers/events]

state observers: those that are proper
(local) to the module, and those that
are part of its interface. The identified
data types may also be local or global, Fig. 1. Design method

A Modelling Approach with Coloured Petri Nets 75

depending on whether they are used

by a single module or several. Note that in Figure 2] the identification of mod-
ules and constituent features are separated. This is due to the re-engineering
phase, which may lead to modifications at a more or less large extent.

Associated properties are then determined and expressed, leading to possible
modifications of state observers and events. New ones can be introduced and
conversely others may be removed if they are duplicates. The lists of identified
elements are updated accordingly.

When reaching a stable set of events, state observers, datatypes and prop-
erties, the modular coloured Petri net can be built and the properties checked.
Several modular constructs for Petri nets exist, which basically correspond to
place and transition fusion. We chose to adopt the presentation of [Kin07] since
it has a clear presentation of both modules and their interface, and is considered
as a good candidate within the Petri nets extensions standardisation process
(ISO/IEC 15909-3 [Pet07]).

The analysis may lead to modifications of the model, in which case the process
should be repeated. The nature of the modifications may be within the mod-
ules, or involve large parts of the system and therefore require reconsidering the
modular structure.

In the following sections, we describe shortly the different steps and apply
them to a model railway case study. For more details about the individual steps
in a non-modular framework, the reader is referred to [CPROT].

3 Analysing the System Description

3.1 Guidelines for Identifying Modules and Constituent Features

The first task of the proposed method is to find the events and the state ob-
servers that are relevant. A grammar-based analysis of an informal description
is proposed, as advocated by classical object-oriented methods (see e.g. [CY9T]).
Some figures may be part of this description, and be refered to and/or (partly)
commented in the text.

The text describing the system is examined, and the verbs, the nouns (or
better the verbal and the noun phrases), and the adjectives outlined. Unless the
same words are used for different meanings, phrases are outlined only once. Note
that verb phrases and noun phrases can be nested. There may also be sentences
that do not carry any information, and are therefore discarded.

In general, the outlined verbs (or verbal phrases) lead to find out the events,
while the outlined nouns and adjectives lead to find out the modules, the state
observers and the datatypes.

Thus all outlined verbs are listed, grouping together the synonyms or different
phrases refering to the same concept, and each one is examined in order to
decide whether it should yield an event. Each event is then given a name (an
identifier), accompanied by a short sentence describing it. Similarly, the outlined
nouns and adjectives are listed, grouping synonyms, and examined in order to
decide whether they yield modules, datatypes or state observers. Each outlined

76 C. Choppy, L. Petrucci, and G. Reggio

state observer is then given a name (an identifier) and a type, accompanied by
a short sentence describing what it observes in the system.

All the datatypes needed to type the state observers should be listed apart,
together with a (chosen) name and if possible a definition or some operations.

The picture and the textual description can lead to identify modules, either
because a particular complex entity is mentioned (e.g. a sender and a receiver
in a network protocol) or because it becomes obvious that some of the other
elements are strongly related to each other. In this latter case, these elements
should be grouped together within a same module. It might also be the case that
this module structure does not appear at this stage, but later on.

When modules are identified, they contain state observers and/or events. They
are also linked to other modules in the global system, through an interface. The
elements of the interface can be state observers or events participating in several
modules whereas the other ones are local to the sole module they are involved
in. As concerns datatypes, they can either be particular to a single module (e.g.
a characteristic of a sender process) and can be declared locally, or shared by
several modules (e.g. a message type) in which case we shall consider them as
global.

For the system and each module, three lists are resulting from this step: (i)
events, (ii) state observers, (iii) datatypes.

3.2 Case Study: Identifying Events and State Observers

The running example is a model railway issued from [BP01], where it was used
as a case study for a students’ project. It is complex enough to show how our
method could help to specify it and obtain a coloured net model.

The informal description of this case study is given below with emphasis on
verbal phrases, noun phrases, or both (when nested).

Informal description. The model
railway is depicted in Figure
It consists of about 15 meters of
tracks, divided into 12 sections
(blocks B1 to B12) connected by
four switches. The way the trains
can pass the switches is indi-
cated by the arrows in Figure
The traffic on all tracks can
go both ways. The railway is con-
nected to a computer via a serial
port which allows to read informa-
tion from semsors and send orders
to trains through the tracks or di-
rectly to switches. Fach section is

switch2 B6 B10 switch3

; . Fig. 2. The tracks of the model railway
equipped with one sensor at each

end, to detect the entrance or

A Modelling Approach with Coloured Petri Nets 7

exit of a train. The orders sent to trains can be either stop or go
forward /backwards at a given speed.

This railway is used by a toy shop to attract people in the store. Hence the
company wants to run several trains at the same time, but these should not
be subject to accidents (i.e. there should be no collision) and should run forever
without human intervention. Thus, an adaptive routing strategy will be
adopted: the behaviour of trains adapts to local conditions instead of
following a pre-determined route. Namely, at each switch, the train route
can be chosen among several tracks and a train may even go back when
it cannot continue forward.

Informal description analysis. The first task to achieve is to analyse the
textual description (as described in Sect. 3] so as to find out relevant elements
about subsystems (or modules), the events, the state of the system (expressed
in terms of state observers), and the data involved (either directly mentioned in
the text, or returned by the state observers).

Here we also have to deal with a picture, and parts of it are commented in
the text, but not necessarily all. For instance, the picture clearly suggests the
switches as subparts, which may yield some Switch modules in a hierarchy. Note
that, in the picture, all switches are alike, i.e. there is one track on one side and
two on the other. The arrows also indicate that a train goes from one side of the
switch to the other side (e.g. from B1 to B3, and not from B3 to B4).

In this analysis of the text, we discard sentences that do not bring any elements
for our concern, e.g. :

“The model railway is depicted in Figure 217
“This railway is used by a toy shop to attract people in the store.”

The text is not fully a “processing narrative”, different levels of discourse are
mixed, such as the “physical (or hardware) level” (e.g. describing how the railway
is connected to a computer) which is not relevant for us, and the “logical level”
which provides us with the needed information. There are also some slightly
ambiguous parts, e.g. the “speed” of trains is mentioned but from the context
we can assume it is expected to be constant except when the train stops. It is
also mentioned that a train can stop, however, again from the context of the
shop we understand that the trains are not supposed to remain stopped.

We also choose the category (verbal or nominal phrase) depending on the kind

of information we expect to extract, for instance in the sentence:
“It consists of about 15 meters of tracks, divided into 12 sections (blocks Bl
to B12), connected by four switches. ”, “it consists” is not a verb potentially
related to any event. We rather have a description of the (here permanent) state
of the tracks display. Sentences about “sensors” are usually related with state
observers, while sentences about “orders” may be related with some events.

We first list the verb phrases and the noun phrases and discuss for each
whether it leads to relevant information. Redundant texts (that describe the
same thing) are grouped together. Then, the modules, events, state observers
and datatypes lists are extracted.

78 C. Choppy, L. Petrucci, and G. Reggio

Verbs (verbal phrases)
— Several sentences refer to the moves and the positions of the trains:

the trains can pass the switches

The traffic on all tracks can go both ways

a train may even go back when it cannot continue forward.
The orders sent to trains can be either stop or go forward /back-
wards at a given speed.

= the changeTrackSec event expresses that a train is moving from one track
section to another, and the changeTrackSwitch event expresses that a train
is moving from one track section to another through a switch. As mentioned
above, an order is often associated with some events that are induced by the
order “completion”. Some event(s) may be associated with a train passing a
switch (specified, e.g. by its number). It is also mentioned that trains can go
“both ways”, this information can be expressed either by a state parameter
of a train (forward/backward/stopped), and/or by stating the tracks from
and to which a train is travelling. The “speed” does not need to be a state
parameter of a train.

— run several trains at the same time = here is an example of a verbal
phrase that may refer to a state of the system where several trains are
travelling at the same time, and this may be observed

— run forever without human intervention = rather a property of the
system that does not reach a final state

— = The two sentences below express a non-determinism property

e the behaviour of trains adapts to local conditions instead of
following a pre-determined route.
e the train route can be chosen among several tracks and ...

List of events
There are several events of two kinds:

changeTrackSec. A train is moving from one track section to another (not via
a switch), for instance from B1 to B2, and from B2 to B1, ...

changeTrackSwitch. A train is moving from one track section to another through
a switch, e.g. for Switchl, from B1 to B3, from B1 to B4, from B4 to B1, and
from B3 to B1.

Nouns (noun phrases)

— about 15 meters of tracks, divided into 12 sections (blocks Bl to B12), con-
nected by four switches. = as mentioned above, this refers to the permanent
state of the tracks display, and this sentence does not describe in detail
which track is connected to which others, and whether it is a simple connec-
tion or via a switch, since all this information is shown in Figure B} often,
state observers relate to some chosen information (rather than to the whole
state), and further work (on the properties) will point out which are needed.
However, it should be appropriate to have the TrackSection datatype. As
mentioned earlier, we have Switch modules. Similarly, we can have modules
associated with the (non-switch) connections between sections.

A Modelling Approach with Coloured Petri Nets 79

— The railway s connected to a computer via a serial port which allows to read
information from sensors and send orders to trains through the tracks or
directly to switches. = this describes the electronic part of the system which
is not considered in the specification.

— Fach section is equipped with one sensor at each end, to detect the en-
trance or exit of a train. = a sensor typically is an observer, trainPresent
observes whether a train is present on a given track section (or not), thus
the Train datatype provides either a train identifier or “none” that denotes
that there is no train.

— not be subject to accidents (i.e. there should be no collision) = this is a
property that should be ensured by the system.

List of datatypes

Trainld ::= {{1,...,¢,} where n is the number of trains.
TrackSection ::=B1|B2|...B12 Train ::= Trainld | none

List of state observers

trainPresent : TrackSection — Train
observes whether a train is present on a given track section (or not)

List of modules

System is the (toplevel) module of the whole system.

Switchl, Switch2, Switch3, Switch4 are the four modules associated with
the four switches, where the details of the train moves within a switch are
expressed. As noted before, they are all alike and can be instantiations of a
same module Switch. Each switch is connected to one track section on one
side (that we shall name 0 afterwards) and two on the other (T1 and T2).
The corresponding event names are constructed with the name of the initial
track and the name of the destination track, e.g. 0T1 means a move from 0
to T1.

MoveSecl, ... MoveSec6 similarly, we can introduce details of the train
moves from one section to another one simply connected (no switch) in both
ways, as instantiations of a module MoveSec (with sections 81 and $2).

In table [, we summarise the elements identified for each module. Those in the
System are global for the system and thus inherited by the other modules. The
other modules have a local part and an interface.

Table 1. Events, state observers and datatypes per module

System Switch MoveSec
TrackSection |local: changeTrackSwitch | local: changeTrackSec
Train, Trainld| 0T1, O0T2, T10, T20 S182, S281
trainPresent |interface: 0, T1, T2: Train|interface: S1, S2: Train

80 C. Choppy, L. Petrucci, and G. Reggio

4 Expected Properties

Let us assume that we have the three lists (events, state observers and datatypes)
produced in the previous step. Now we consider the task of finding the most
relevant/characteristic properties of the system and of its behaviour, and to
express them in terms of the identified events and state observers (using also the
identified datatypes). Our method helps to find out these properties by providing
precise guidelines for the net designer to examine all relevant relationships among
events and state observers, and all aspects of events and state observers.

4.1 Finding Properties

For each state observer SO returning a value of type DT (declared as SO: DT),
we look for:
— properties on the values returned by SO (e.g. assuming DT = INT, SO should
always return positive values);
— properties relating the values observed by SO with those returned by other
state observers (e.g. the value returned by SO is greater than the value
returned by state observer SOy).

The state observers also allow for expressing the following properties:

— initial condition: a property about state observers that must hold in any
initial state;

— final condition: a property about state observers that must hold in all final
states, if any.

For each event EV we look for its:

— precondition which must hold before EV happens;

— postcondition which must hold after EV happened;

— other properties:

on the past : properties on the possible pasts of EV;

on the future : properties on the possible futures of EV;

vitality when it should be possible for EV to happen;

incompatibility: the events EV; such that there cannot exist a state in
which both EV and EV; may happen.

While writing the properties, we may have to revise the lists obtained at the
previous step, either to add new elements or to remove duplicates.

4.2 Properties of the Model Railway Case Study

Event properties
changeTrackSec a train tr is moving from one track section tsl to another ts2
precondition the two tracks should be connected (we introduce a new state
observer connected), there should be no train on ts2, and the train is on
tsl and is moving in the direction of ts2 (in the given layout of Figure 2]
a simple and generic way to denote the train direction td is clockwise and

A Modelling Approach with Coloured Petri Nets 81

anticlockwise that are the two values of a TrainDirection type, and the
Trainld should now include this information together with an operation
direction to retrieve it ; moreover, the connected observer should include
this parameter)
connected (tsl, ts2, td) A direction (tr)=td A trainPresent (tsl)= tr A
trainPresent (ts2)=none

postcondition the train is on ts2, and there is no train on tsl anymore
trainPresent (ts2)=tr A trainPresent (tsl)=none

more incompatibility properties (it is not possible that several events occur
concurrently towards the same track).

changeTrackSwitch a train tr is moving from one track section tsl to another

ts2 through a switch

precondition the two tracks should be connected via a switch (we intro-
duce a new state observer switched), there should be no train on ts2, and
the train should be moving in the direction of ts2
switched (ts1, ts2, td) A direction (tr)=td A trainPresent (tsl)= tr A train-
Present (ts2)=none

postcondition the train is on ts2, and there is no train on tsl anymore
trainPresent (ts2)=tr A trainPresent (tsl)=none

more incompatibility properties (it is not possible that several events occur
concurrently towards the same track).

While expressing the properties of the events, we identified the following new
state observers, datatypes and operations:
(New) List of state observers

connected : TrackSection x TrackSection x TrainDirection — BOOL
switched : TrackSection x TrackSection x TrainDirection — BOOL

(New) datatypes and operations over the Trainld datatype

TrainNumber ::= {¢1,...,t,} where n is the number of trains.
TrainDirection ::= clockwise | anticlockwise
Trainld ::= pair (TrainNumber,TrainDirection)

direction: Trainld — TrainDirection
direction (pair (tn,td))=td
Train ::= Trainld | none (unchanged)

State observers properties

trainPresent : TrackSection — Train
observes whether a train is present on a given track section (or not), and
this depends on the state of the system

connected : TrackSection x TrackSection x TrainDirection — BOOL

these are axioms about the layout, e.g.

connected (B2, B1, clockwise)=true; connected (B2, B4, anticlockwise)=false;
switched : TrackSection x TrackSection x TrainDirection — BOOL

these are axioms about the layout, e.g.

switched (B3,B1,anticlockwise)=true; switched (B3,B5,clockwise)=false;

82 C. Choppy, L. Petrucci, and G. Reggio

initial state. Initially, n trains are on different tracks, each heading one direc-
tion or the other.
Vtr € TrainNumber : 3'ts € TrackSection : 3d € TrainDirection :
trainPresent(ts) = (tr, d)

final state. There should not be any final state, since the system should never
terminate.

Note that switches 1 and 3 behave identically since a train present on 0 head-
ing clockwise can go on either T1 or T2, while it is the case in switches 2 and
4 if the train is running anticlockwise. Therefore, the Switch module can be
parameterised with the direction (as in section[(.2)). This entails that for a mod-
ule Switch(dir), we have: switched (0,T1,dir)=true; switched (0,T2,dir)=true;
switched (T1,0,'dir)=true; switched (T2,0,!dir)=true, where !dir is the direc-
tion opposite to dir, and all the other possibilities are false. A similar approach
can be applied to connected in the Move Sec modules.

5 Construction of the Modular Coloured Petri Net

At this point, we can assume that we have the list of modules with their inter-
faces, as well as the state observers and events (plus the list of used datatypes
with their operations) resulting from the previous steps, and that for each event
the pre/postconditions have been expressed. Other properties about the state
observers and the events have also been found, that will be checked in the last
step of the method, once the net is built.

5.1 Deriving the Net

Starting from the above elements, a coloured Petri net modelling the system can
be built from the different modules and their interfaces. For each module, we
first express the conditions in a canonical way. The canonical form requires that:

1. each state observer has type MSet(T) for some type T;
2. the pre/postconditions have the following form [1
pre (Ni=1,...n exp; < SO;) A (Aj=n+1,...,m exp; < SO;) A cond,
post (Ai=1...n SO} = SO; — exp; + exp)) A (Nj=n+1,...,m SO;- =S50, — exp;j)A
(Ah=m+1,...r SO}, = SOy, + exp}) A cond',

where
— SO; (I=1,...,r) are all distinct,
— the free variables occurring in exp; and exp] (I =1,...,r) may occur in
cond and in cond’,
— no state observer occurs in cond, cond’, exp; and exp; (I =1,...,7),

— and cond and cond’ are first order formulae.

L' <, + and — denote respectively the inclusion, union and the difference between
multisets.

A Modelling Approach with Coloured Petri Nets 83

In [CPROT], some often encountered schemes have

been identified so as to obtain a canonical form.
Assume that all elements are in the canonical form. Badl

The coloured Petri net is defined as follows. The state ‘EX? oxp,

observers and the events determine the places and the *»

transitions, while the pre/postconditions determine the

arcs. Each state observer SO : MSet(T) becomes a place cond /\ cond’

named SO coloured by T, and each event EV becomes a . o
transition, named EV. Pre/postconditions of an event Fig. 3. Deriving arcs
EV lead to the set of arcs as pictured in Fig. B

5.2 Coloured Petri Net Modelling the Railway

We deduce from the previous analysis that the net modelling the railway is com-
posed of 4 Switch (figure 5(b)) and 6 MoveSec modules (figure 5(a)). Moreover,
a toplevel structure (figure) indicates how these different modules are linked
together via their interfaces. The notations adopted here are those of [Kin07].
For the sake of figures readability, anticlockwise and clockwise are shortened to
acl and cl respectively. Note that the track sections are modelled by places
containing a token with the contents of the section itself.

B3B7: MoveSec

switchl: Switch(cl) b O S2 S1 e switch3: Switch(acl)

711" T0OT1
oo Y e

T2 @ 1 B4B8: MoveSec 1. @ T2
BIB‘Z/: MoveSec

POs2 st(Or7
(st s2 s1 SQ\O
O Q

SWitCI}IIQZ Switch(acl) L O S1 S2 O< J switch4: Switcl\l\(cl)

o mO SOm
Oo e
T2 O$ 1 B6B10: MoveSec |l)O T2

Ost o s2(04 7

B11B12: MoveSec

B5B9: MoveSec

Fig. 4. The toplevel net model of the model railway

6 Checking the Properties
6.1 Checking the Expected and Required Properties

The previous steps of our design method did exhibit several properties which
must be satisfied by the system. These properties should be expressed accord-
ing to the language accepted by the coloured Petri nets tool to be used. Then the

84 C. Choppy, L. Petrucci, and G. Reggio

MoveSec Switch(dir)
import type : Train import type : Train
S1: Train S2 : Train T1: Train) T2 : Train
O O : Train O

@ @

var t : TrainNumber

x
var t : TrginNumber

Y
|
|
|
|
|

S1S2

| |

1 1

| |
(t,a (t,acl) T T2

| |

| |

| |

¢ I

S2 none none
(t,cl)
T10 T20
5251 0
none none

(a) The MoveSec module (b) The Switch(dir) module

Fig. 5. The modules

properties should be checked using the tool, e.g. generate the occurrence graph
and check that all states satisfy the properties.

6.2 The Railway Properties

After generating the occurrence graph for an initial marking with 4 trains, we
check the expected properties. We find that there are deadlocks, e.g. with a
train going clockwise in B11 and a train going in the other direction in B12.
The other deadlocks are similar with either adjacent track sections or sections
connected by a switch. Hence the policies for moving between adjacent tracks
must be improved in both kinds of modules.

7 Re-engineering

7.1 Modifying the Model

In case some properties do not hold, the designer should investigate the causes
of the problem by e.g. closely examining the states not satisfying the property
and the paths leading to these states. This gives insight to locate the source of
the problem. The model then has to be modified accordingly, and the process
repeated until all properties hold. It might also be the case that some properties
derived from the informal specification are not correctly expressed. Then the
properties should be changed and the new ones checked.

7.2 New Version of the Railway Model

The policy in module MoveSec is changed by having a new event retboth where
both trains return when each of them wants to go on the other train track, as

A Modelling Approach with Coloured Petri Nets 85

depicted in figure 6(a). Similarly, the policy in module Switch is improved by

adding an event retO where in case of deadlock, the train on the side of the switch

with a single section returns to go in the opposite direction as in figure 6(b).
The new model is analysed again and the properties are satisfied.

MoveSec Switch(dir)
import type : Train import type : Train
T1 : Trai T2 : Trai
S1 : Train S2 : Train ram . e
O O O O : Train O
7 x

x
var t,t1,t2 : ’:I‘rainNumber

var t,61,62 : TraianlIIlbqr

£ x
I I
I I
I I
I I
I I

1di (6] 1di
(t,!dir) TCJ‘P (t,!dir)

T1 T2
none none
t,dir) (t,dir
T10 T20
5251 0
none none
(a) The new MoveSec module (b) The new Switch(dir) module

Fig. 6. The new modules

8 Conclusion and Future Work

Designing a formal specification has proved to be important to check properties
of a system prior to hardware and software costly implementation. However,
even if such an approach reduces both the costs and the experimenting time,
designing a formal model is difficult in general for an engineer.

This paper gives guidelines to help with the design process. The main idea is
to derive key features from the textual description of the problem to model, in a
rather guided manner so as to deduce the important entities handled, and then
to transform all this into Petri net elements. At the same time, some properties
inherent to the system appear, that are also formalised and should be proven
valid on the model at an early stage. When a coloured net is obtained, with
these properties satisfied, further analysis can be carried out, leading to possible
changes in the specification.

Our method, inspired by [CR06], was developed in [CPROT7] for writing flat
coloured Petri nets. Here, we have started exploring the addition of a modular
structure, which is most helpful when designing large systems. The process is
applied to a simple model railway case study, which nevertheless raises issues for
future work.

The process for obtaining modules should be investigated further and for-
malised. In the case study, the Switch module emerged early in the specification
process. On the contrary, it seemed relevant and consistent to introduce MoveSec.

86 C. Choppy, L. Petrucci, and G. Reggio

The notations used for the description of modules are those of [Kin07]. How-
ever, it does not completely take into account the main (toplevel) system descrip-
tion. Therefore, a clean expression of the hierarchy and the connection between
components interfaces is required.

When listing the constituent features of the modules, some were obviously
part of a single module, hence local, while others were shared by several modules.
This is particularly the case for datatypes. We chose here to make these latter
global by declaring them at the system level. However, for efficiency purposes, in
particular during the analysis phase, we should rather consider which modules
use them and which ones do not.

Our case study did exhibit several instances of a same module, and then a
parameterised one. Here, finding these elements was rather simple, but we should
investigate different cases where the use of such concepts is worthwhile.

The last phase of our method aims at checking that the system model satisfies
the expected properties. However, we could imagine adding some refinement
procedure there, in order to describe part of the system with additional detail.

Finally, the verification was performed using CPNTooLs [JKWO07]. For the
moment, no tool suite handles these modular mechanisms, having an interface to
modules with possibly both places and transitions. The development of modular
nets in the framework of ISO/IEC 15909-3 standardisation will not only enhance
the theoretical constructs and notations, but also be an incentive for adequate
tool implementation.

References

[BPO1] Berthelot, G., Petrucci, L.: Specification and validation of a concurrent
system: An educational project. Journal of Software Tools for Technology
Transfer 3(4), 372-381 (2001)

[CP04] Choppy, C., Petrucci, L.: Towards a methodology for modelling with Petri
nets. In: Proc. Workshop on Practical Use of Coloured Petri Nets, Aarhus,
Denmark, October 2004, pp. 39-56 (2004) Report DAIMI-PB 570, Aarhus,
DK

[CPRO7] Choppy, C., Petrucci, L., Reggio, G.: Designing coloured Petri net models:
a method. In: Proc. Workshop on Practical Use of Coloured Petri Nets,
Aarhus, Denmark (October 2007)

[CRO6] Choppy, C., Reggio, G.: A formally grounded software specification method.
Journal of Logic and Algebraic Programming 67(1-2), 52-86 (2006)

[CY91] Coad, P., Yourdon, E.: Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs (1991)

[JKWO07] Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. Journal of Software Tools
for Technology Transfer 9(3-4), 213-254 (2007)

[Kin07] Kindler, E.: Modular PNML revisited: Some ideas for strict typing. In: Proc.
AWPN 2007, Koblenz, Germany (September 2007)

[Pet07] Petrucci, L.: ISO/IEC 15909 — Part 3: Extensions (November 2007) Work-
ing document of ISO/IEC JTC1-SC7-WG19, ref. PA2-018

	Introduction
	Overview of the Design Method
	Analysing the System Description
	Guidelines for Identifying Modules and Constituent Features
	Case Study: Identifying Events and State Observers

	Expected Properties
	Finding Properties
	Properties of the Model Railway Case Study

	Construction of the Modular Coloured Petri Net
	Deriving the Net
	Coloured Petri Net Modelling the Railway

	Checking the Properties
	Checking the Expected and Required Properties
	The Railway Properties

	Re-engineering
	Modifying the Model
	New Version of the Railway Model

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

