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I Degree in Informatics Engineering (UPV).
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Summarization.
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Deep Learning for Sequence Modeling

I Dominance of convolutions and recurrences († 2017).
I Tendency to reduce the complexity of recurrent models:

I GRU, Attention Mechanisms, Sequential computation ...

I Reducing the sequential computation to learn dependencies
independently of the positions with Attention Mechanisms.
I Transformers!

0Pictures from [34, 2]
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Transformers

I Originally proposed as encoder-decoder
model for NMT [28].

I Completely based on scaled dot-product
attentions.

I More parallelizable (better suited for large
and small datasets)

I The encoder is able to extract good text
representations.



Self-Attention

I Learn representations from the all-vs-all interactions of the
words e.g. Z = XX ᵀ

I Q, K , V projections for computing the self-attentions.

I Output Z is computed as a weighted sum of V .

I These weights are computed as a compatibility function of Q
and K .

I Advantage: path length between Xi and Xj of O(1)

I What happens with the word order?

0Pictures from [1]



Multi-head Attention

I Self-Attention applied h times on the same input (Zi≤h

outputs are projected to Z )

I Allowing the model to jointly attend to information of
different representation subspaces (e.g heads detecting word
coreferences)

I More parallelizable (even dq, dk and dv can be smaller).

0Picture from [1]



Multi-head Attention

...



Insights

I Several strategies for adding positional information:
I Absolute/Relative positions [26]
I Heuristic rules / Positional embeddings [28]

I Optimization tricks for Deep Transformers:
I Noam learning rate schedule / LAMB [28] [33]
I Cross-Layer parameter sharing [17]
I Factorized embeddings [17]
I Gradient accumulation.

I Product Key Memory [16].



Product Key Memory

I To increase the network capacity without computational
overhead [16].

I A 12-layered Transformer with one Product Key Memory can
outperform a 24-layered Transformer.

0Picture from [16]
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Transformers for Text Classification

I Moving from uncontextual
pre-trained embeddings [21] to
contextualized finetuning models
[19, 5, 24].

I What if we work in social network
texts and non-english languages?

I But we want to profit the capacity
of the Transformers:

1. Contextualize pre-trained
embeddings [9, 10].

2. Adapt finetuning models to our
task [8]



Transformers for Text Classification

I Evaluation of the Transformer Encoders for Spanish Twitter
text classification tasks:
I Sentiment Analysis (TASS 2019) [6, 10]
I Irony Detection (IroSVA 2019) [3, 9]

I Without an extensive search of the hyper-parameters.

I Same model and resources for both tasks.

I Are they more powerful than other Deep Learning approaches?



Tasks

I TASS: Assigning a global polarity to each tweet on four
classes C = {N, NEU, NONE, P}

I IroSVA: Determine the ironic content of each tweet in two
classes C = {No-I, I}

I Spanish variants (Peru, Costa Rica, Cuba, Mexico and
Uruguay)



Experimental Details

I Skip-gram word embeddings (de = 300 & 87M tweets)
I Fixed most of the hyper-parameters:

I L ∈ {1, 2}, h = 8, dq = dk = dv = 64 and dff = de

I Sine-Cosine Positional Encoding

I Weighted cross-entropy using w(c) =
max
c′∈C

N(c ′)

N(c)

I Adam + Noam Learning Rate Annealing

I Macro-F1 for evaluating TASS and F1 for IroSVA.

I Comparison with DAN [15] and Att-LSTM [30].



Comparison

I TE outperforms DAN
& Att-LSTM for all
metrics.

I Same behavior for all
the other Spanish
variants.

I Positional
relationships are not
useful in these
corpora.

MP MR MF1

DAN 47.66 48.46 47.94
Att-LSTM 50.00 48.14 48.83
1-TE-NoPos 52.80 54.38 53.34
1-TE-Pos 46.26 46.56 46.25
2-TE-NoPos 52.85 53.03 51.47
2-TE-Pos 47.31 48.79 47.71

F10 F11 MF1

DAN 85.78 69.79 77.78
Att-LSTM 81.05 66.05 73.54
1-TE-NoPos 85.79 74.18 79.98
1-TE-Pos 81.63 65.38 73.51
2-TE-NoPos 84.05 69.27 76.65
2-TE-Pos 82.64 62.83 72.74



Comparison

MF1 MP MR Rank
ES 50.70 50.50 50.80 1/9
CR 49.60 49.80 49.30 2/9
PE 44.70 45.60 43.90 2/9
UY 51.50 49.70 53.60 2/7
MX 50.10 49.00 51.20 1/9

CU ES MX Avg Rank
ELiRF-UPV 65.27 71.67 68.03 68.32 1/18
CIMAT 65.96 64.49 67.09 65.85 2/18
LDSE 63.35 67.95 66.08 65.79 3/18
JZaragoza 61.63 66.05 67.03 64.90 4/18
W2V Baseline 60.33 68.23 62.71 63.76 5/18



Attention Analysis

I The compatibility function between Q and K of the heads
allows us to explain some properties captured by the system.

I Be Aijk the attention that the word i puts in the word j in the
attention head k:
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Attention Analysis

I We study the relationships captured by the multi-head
self-attention mechanism.

I These relationships are task dependent:
I Sentiment Analysis:

I Word polarities
I Polarity modifiers (shifters and intensifiers)

I Irony Detection
I Ironic attention heads
I Impact of polarity words
I Relevance of individual words
I Word pair relationships



Attention Analysis

I How can we analyze if our system takes them into account?

I Computing the average attention that each word receives
from all the other words for each head, averaged for all the
occurrences of the word in a dataset.



Sentiment: Detecting Word Polarity
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Sentiment: Detecting Word Polarity
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I C(w) =

{
P αw4 ≤ αw5

N αw4 > αw5

}
classifies correctly the

74.75± 3.17% of the samples from ElHuyar lexicon.

I Only considering the distribution of two independent heads!



Sentiment: Detecting Polarity Modifiers
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I Heads 4 and 5 do not react to non-polarity words.

I Head 1 seems to react to all polarity modifiers to a greater or
lesser extent.

I The attention distributions for polarity modifiers are very
similar.



Irony: Detecting Ironic Heads

I If we switch-off an attention head and the F1(1) decreases,
that head is related with the Irony.

I Iterative process for masking attention heads.

I We explore incrementally the 2h − 2 combinations of
maskings.

I The heads that appear in more combinations that worsen the
F1(1) are the Ironic Heads.



Irony: Impact of polarity words

I Which words are the most attended by Hironic heads?

I We compute the average attention given by each head
k ∈ Hironic to the word w , α[w ][k]

I If α[w ][k] > ε, w is highly attended by k

I Polarity lexicons to analyze the polarity of these highly
attended words.



Irony: Impact of individual words

I Are there words that determine the irony?
I Two approaches:

I Average attention given by Hironic

B ←
∑

k∈Hironic
softmax(

f (X )Qk
f (X )>Kk√
dk

) ; B ′
j ← 1

|X |
∑|X |

i=1 Bij

I Euclidean norm of the input gradients:

B ′
j ← ‖∇XL(f (X ; θ), y = 1)j‖



Irony: Word relationships
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Text Summarization

I Need to condense big amounts of unstructured information
available in media platforms.

I Approaches to automatic summarization can be divided in:
I Extractive
I Abstractive
I Mixed

I The most common human strategy to summarize documents
consists in applying an ordered sequence of these approaches.

I The first step consists in focusing on the most relevant
sentences (Extractive approach)

I Extractive Neural Summarization systems to the rescue!



Attentional Extractive Summarization

I Typical neural approaches states the problem as a sequential
binary sentence classification problem.

I No corpora with this kind of labeling:
I Suboptimal extractive oracles [4, 22, 18]
I Reinforcement Learning [23, 35, 7, 32]

I Attentional approaches do not require a sentence labeling.

I They simplify the sequential classification problem.

I Based on the interpretation of Attentional Networks after
being trained to solve a proxy binary classification task:
distinguishing correct (document, summary) pairs.



Attentional Extractive Summarization

I All systems under this framework are based on two main ideas:

First idea

If we can say if a summary y is correct for a document x and we can
look at the relevant sentences in x that led us to that decision, then we
can build a summary ŷ , composed by the relevant sentences in x , that
is similar to the reference y .

Second Idea

If y is a correct summary for a document x , then y and x have similar
semantics (similar representations) while if w is an incorrect summary
for a document x , then w and x have less similar semantics (less similar
representations).



Siamese Hierarchical Attention Networks

I From these two ideas we proposed Siamese Hierarchical
Attention Networks based on Attentional LSTM encoders
[31, 12]



Siamese Hierarchical Transformer Encoders

I The attention mechanism can learn word-level relationships
such as coreference [27], coherence [27], anaphora [29], etc.

I But also sentence-level relationships!

I We propose to use Transformer Encoders in a hierarchical
way, to process sequences of sentences by replacing the
Attentional LSTM of SHA-NN.

I The sentence relevances are implicitly computed by the
multi-head self-attention mechanisms.



Siamese Hierarchical Transformer Encoders
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Extractive Summarization with SHTE

I Once the model is trained for the proxy task, the compatibility
function at sentence level can be used to detect relevant
sentences [11]

I Differently from SHA-NN [12], the compatibility function of
these attention mechanisms do not assign a real value to each
sentence:

Sentence Relevance Hypothesis

If a sentence s is greatly attended on average by all the other
sentences s ′ for all the attention heads h, this sentence condenses
a big part of the information of the sentences s ′, being thus, more
relevant.



Extractive Summarization with SHTE

0. before you go , we thought you ’d
like these ... if you want a face lift ,
and you have the time and money to
make that happen , go for it.

1. but if you want a non-invasive
alternative to surgery to help you get
younger-looking skin , you need a
good device.

2. the nuface trinity is a skin care
device designed with interchangeable
treatment attachments to help with
facial stimulation and the reduction
of fine lines and wrinkles.

3. in as little as five minutes a day ,
you can improve your facial contour
and skin tone.

4. watch beauty expert jenny patinkin
show you just how it easy it is to use
this device.

5. looking for something else ? check
out the video below to keep
shopping !



Corpora

I Automatically collected corpora from newspaper domains:
I CNN/DailyMail [14].
I NewsRoom (BBC, Time, Bloomberg, Telegraph, ...) [13].

I The summaries of these corpora are the highlights written
manually by the editors.

I Biased towards the first article sentences.



Results

I Similar results to
PGen+Cov [25],
SummaRunner [22],
DQN [32] and
Refresh [23].

I Best models take
profit of pre-trained
language models [18],
Reinforcement
Learning [7, 35] or
word-length strategies
[20]



Results

I Corpus divided in 3 subsets relating to the extractive degree
(density)

I Extracting k = 2 better than k = 3 (not in the abstractive
subset).

I Except ECS, our proposal outperforms all the neural models.



Convergence

I SHTE requires visiting more samples than SHA-NN until
convergence, but few training hours (4− 5× for NewsRoom)

I It obtains lower results in terms of Acc on (document,
summary) pairs, but similar results for ROUGE (CE mismatch
[23]).

I Faster than other approaches for CNN/DailyMail:
I BanditSum: 76 hours (single GPU Nvidia Titan Rx)
I DQN: 10 days (single GPU Nvidia 1080 Ti)
I Refresh: 12 hours (single GPU)



Analysis

I Two interesting observations on SHTE:

I How affects the positional information?

I Is it required positional information?
I Is it required positional information on both levels?
I What if only using sentence positional information?

I What heads capture better the sentence relevance?

I Are there individual heads related to condense information?
I What about averaging heads?

I Is the word-length distribution obtained by SHA-NN & SHTE
similar to the distribution on the reference summaries?



Analysis

Precision Recall F1

Head R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

No Positional

1 24.28 7.92 21.79 45.06 15.15 40.38 29.75 9.80 26.68
2 24.58 8.11 22.13 44.15 14.90 39.64 29.89 9.92 26.88
3 24.79 7.97 22.29 43.48 14.42 38.98 29.64 9.62 26.62
4 24.14 7.81 21.67 44.14 14.71 39.25 29.51 9.63 26.46
5 24.49 7.94 22.02 43.40 14.39 38.90 29.61 9.66 26.58
6 24.42 7.60 21.89 41.90 13.33 37.41 29.00 9.09 25.95
Avg Heads 24.67 8.23 22.16 45.45 15.53 40.73 30.20 10.15 27.10

Sent Positional

1 27.79 11.07 25.21 51.31 20.78 47.34 34.76 13.82 31.51
2 27.17 10.66 24.62 52.36 20.67 47.38 34.29 13.47 31.06
3 29.19 11.71 26.53 51.74 20.86 46.98 35.83 14.39 32.55
4 29.84 12.09 27.15 52.17 21.24 47.41 36.15 14.58 33.16
5 29.12 11.87 26.48 53.09 21.66 48.19 36.03 14.68 32.74
6 29.60 12.01 26.91 52.30 21.30 47.45 36.21 14.73 32.99
Avg Heads 29.64 12.03 26.97 52.46 21.36 47.67 36.36 14.76 33.37

Sent-Word Positional

1 24.68 8.12 22.13 44.20 14.70 39.59 30.11 9.94 27.03
2 23.91 7.84 21.51 44.34 14.87 39.79 29.45 9.74 26.47
3 25.83 9.69 23.32 50.38 18.98 45.37 32.16 11.74 28.95
4 23.59 7.66 21.18 43.99 14.61 39.39 28.98 9.48 25.98
5 25.23 8.86 22.72 47.47 17.02 42.68 31.38 11.10 28.24
6 23.94 7.49 21.56 39.29 12.76 35.82 28.35 8.94 25.49
Avg Heads 25.33 9.42 22.84 50.92 19.02 45.85 32.40 12.04 29.18



Analysis

0 25 50 75 100 125 150 175 200
# words

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Reference
= 57.544, = 25.033

Lead-3
= 93.200, = 23.670

SHANN-3
= 94.375, = 23.505

SHTE-3
= 95.411, = 23.886

0 25 50 75 100 125 150 175 200
# words

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Reference
= 46.700, = 47.450

Lead-2
= 61.390, = 26.754

SHANN-2
= 66.138, = 24.734

SHTE-2
= 63.516, = 26.383

0 25 50 75 100 125 150 175 200
# words

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Reference
= 46.700, = 47.450

Lead-3
= 89.061, = 33.150

SHANN-3
= 96.448, = 30.626

SHTE-3
= 92.800, = 32.382



References I

The illustrated Transformer, howpublished = http://jalammar.github.io/illustrated-transformer/,

note = Accessed: 2020-01-25.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and translate.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Reynier Ortega Bueno, Francisco M. Rangel Pardo, Delia Irazú Hernández Faŕıas, Paolo Rosso, Manuel
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José-Ángel González, Llúıs-Felip Hurtado, and Ferran Pla.

Elirf-upv at irosva: Transformer encoders for spanish irony detection.
In Proceedings of the Iberian Languages Evaluation Forum co-located with 35th Conference of the Spanish
Society for Natural Language Processing, IberLEF@SEPLN 2019, Bilbao, Spain, September 24th, 2019,
pages 278–284, 2019.
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